SLUGBOT, an Aplysia-Inspired Robotic Grasper for Studying Control | SpringerLink
Skip to main content

SLUGBOT, an Aplysia-Inspired Robotic Grasper for Studying Control

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2022)

Abstract

Living systems can use a single periphery to perform a variety of tasks and adapt to a dynamic environment. This multifunctionality is achieved through the use of neural circuitry that adaptively controls the reconfigurable musculature. Current robotic systems struggle to flexibly adapt to unstructured environments. Through mimicry of the neuromechanical coupling seen in living organisms, robotic systems could potentially achieve greater autonomy. The tractable neuromechanics of the sea slug Aplysia californica’s feeding apparatus, or buccal mass, make it an ideal candidate for applying neuromechanical principles to the control of a soft robot. In this work, a robotic grasper was designed to mimic specific morphology of the Aplysia feeding apparatus. These include the use of soft actuators akin to biological muscle, a deformable grasping surface, and a similar muscular architecture. A previously developed Boolean neural controller was then adapted for the control of this soft robotic system. The robot was capable of qualitatively replicating swallowing behavior by cyclically ingesting a plastic tube. The robot’s normalized translational and rotational kinematics of the odontophore followed profiles observed in vivo despite morphological differences. This brings Aplysia-inspired control in roboto one step closer to multifunctional neural control schema in vivo and in silico. Future additions may improve SLUGBOT’s viability as a neuromechanical research platform.

K. Dai, R. Sukhnandan, M. Bennington—These authors contributed equally to the work.

This work was supported by NSF DBI2015317 as part of the NSF/CIHR/DFG/FRQ/UKRI-MRC Next Generation Networks for Neuroscience Program and by the NSF Research Fellowship Program under Grant No. DGE1745016. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9151
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11439
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Church, P.J., Lloyd, P.E.: Expression of diverse neuropeptide cotransmitters by identified motor neurons in Aplysia. J. Neurosci. 11(3), 618–625 (1991). https://doi.org/10.1523/jneurosci.11-03-00618.1991

    Article  Google Scholar 

  2. Church, P.J., Lloyd, P.E.: Activity of multiple identified motor neurons recorded intracellularly during evoked feedinglike motor programs in Aplysia. J. Neurophys. 72(4), 1794–1809 (1994). https://doi.org/10.1152/jn.1994.72.4.1794

    Article  Google Scholar 

  3. Cropper, E.C., Jing, J., Weiss, K.R.: The Feeding Network of Aplysia. Oxford University Press, Oxford (2019). https://doi.org/10.1093/oxfordhb/9780190456757.013.19

  4. Dai, K., et al.: Design of a biomimetic tactile sensor for material classification. In: International Conference on Robotics and Automation. IEEE (2022)

    Google Scholar 

  5. Drushel, R.F., Neustadter, D.M., Hurwitz, I., Crago, P.E., Chiel, H.J.: Kinematic models of the buccal mass of Aplysia Californica. J. Exp. Biol. 201(10), 1563–1583 (1998). https://doi.org/10.1242/jeb.201.10.1563

    Article  Google Scholar 

  6. Gill, J.P., Chiel, H.J.: Rapid adaptation to changing mechanical load by ordered recruitment of identified motor neurons. eNeuro 7(3) (2020). https://doi.org/10.1523/ENEURO.0016-20.2020

  7. Harber, E., Schindewolf, E., Webster-Wood, V., Choset, H., Li, L.: A tunable magnet-based tactile sensor framework. In: 2020 IEEE Sensors. IEEE (2020). https://doi.org/10.1109/SENSORS47125.2020.9278634

  8. Kehl, C.E., et al.: Soft-surface grasping: radular opening in Aplysia Californica. J. Exp. Biol. 222(16) (2019). https://doi.org/10.1242/jeb.191254

  9. Lyttle, D.N., Gill, J.P., Shaw, K.M., Thomas, P.J., Chiel, H.J.: Robustness, flexibility, and sensitivity in a multifunctional motor control model. Biol. Cybern. 111(1), 25–47 (2016). https://doi.org/10.1007/s00422-016-0704-8

    Article  MathSciNet  Google Scholar 

  10. Mangan, E.V., Kingsley, D.A., Quinn, R.D., Sutton, G.P., Mansour, J.M., Chiel, H.J.: A biologically inspired gripping device. Ind. Robot. (2005). https://doi.org/10.1108/01439910510573291

    Article  Google Scholar 

  11. McManus, J.M., Lu, H., Cullins, M.J., Chiel, H.J.: Differential activation of an identified motor neuron and neuromodulation provide Aplysia’s retractor muscle an additional function. J. Neurophysiol. 112(4), 778–791 (2014). https://doi.org/10.1152/jn.00148.2014

    Article  Google Scholar 

  12. Morton, D.W., Chiel, H.J.: The timing of activity in motor neurons that produce radula movements distinguishes ingestion from rejection in Aplysia. J. Comp. Physiol. 173(5), 519–536 (1993). https://doi.org/10.1007/BF00197761

    Article  Google Scholar 

  13. Morton, D., Chiel, H.: In vivo buccal nerve activity that distinguishes ingestion from rejection can be used to predict behavioral transitions in Aplysia. J. Comp. Physiol. 172(1), 17–32 (1993). https://doi.org/10.1007/BF00214712

    Article  Google Scholar 

  14. Neustadter, D.M., Drushel, R.F., Crago, P.E., Adams, B.W., Chiel, H.J.: A kinematic model of swallowing in Aplysia californica based on radula/odontophore kinematics and in vivo magnetic resonance images. J. Exp. Biol. 205(20), 3177–3206 (2002). https://doi.org/10.1242/jeb.205.20.3177

    Article  Google Scholar 

  15. Neustadter, D.M., Herman, R.L., Drushel, R.F., Chestek, D.W., Chiel, H.J.: The kinematics of multifunctionality: comparisons of biting and swallowing in Aplysia californica. J. Exp. Biol. 210(2), 238–260 (2007). https://doi.org/10.1242/jeb.02654

    Article  Google Scholar 

  16. Nishikawa, K., et al.: Neuromechanics: an integrative approach for understanding motor control. Integr. Comp. Biol. 47(1), 16–54 (2007). https://doi.org/10.1093/icb/icm024

    Article  Google Scholar 

  17. Novakovic, V.A., Sutton, G.P., Neustadter, D.M., Beer, R.D., Chiel, H.J.: Mechanical reconfiguration mediates swallowing and rejection in Aplysia californica. J. Comp. Physiol. 192(8), 857–870 (2006). https://doi.org/10.1007/s00359-006-0124-7

    Article  Google Scholar 

  18. Park, C., et al.: An organosynthetic dynamic heart model with enhanced biomimicry guided by cardiac diffusion tensor imaging. Sci. Robot. 5(38) (2020). https://doi.org/10.1126/scirobotics.aay9106

  19. Pfeifer, R., Bongard, J., Grand, S.: How the Body Shapes the Way We Think: A New View of Intelligence. MIT Press, Cambridge (2006). https://doi.org/10.7551/mitpress/3585.001.0001

  20. Ritzmann, R.E., Quinn, R.D., Fischer, M.S.: Convergent evolution and locomotion through complex terrain by insects, vertebrates and robots. Arthropod Struct. Dev. 33(3), 361–379 (2004). https://doi.org/10.1016/j.asd.2004.05.001

    Article  Google Scholar 

  21. Royakkers, L., van Est, R.: A literature review on new robotics: automation from love to war. Int. J. Soc. Robot. 7(5), 549–570 (2015). https://doi.org/10.1007/s12369-015-0295-x

    Article  Google Scholar 

  22. Sutton, G.P., et al.: Passive hinge forces in the feeding apparatus of Aplysia aid retraction during biting but not during swallowing. J. Comp. Physiol. 190(6), 501–514 (2004). https://doi.org/10.1007/s00359-004-0517-4

    Article  Google Scholar 

  23. Sutton, G.P., Mangan, E.V., Neustadter, D.M., Beer, R.D., Crago, P.E., Chiel, H.J.: Neural control exploits changing mechanical advantage and context dependence to generate different feeding responses in Aplysia. Biol. Cybern. 91(5), 333–345 (2004). https://doi.org/10.1007/s00422-004-0517-z

    Article  MATH  Google Scholar 

  24. Valero-Cuevas, F.J., Santello, M.: On neuromechanical approaches for the study of biological and robotic grasp and manipulation. J. Neuroeng. Rehabil. 14(1), 101 (2017). https://doi.org/10.1186/s12984-017-0305-3

    Article  Google Scholar 

  25. Webster-Wood, V.A., Gill, J.P., Thomas, P.J., Chiel, H.J.: Control for multifunctionality: bioinspired control based on feeding in Aplysia californica. Biol. Cybern. 114(6), 557–588 (2020). https://doi.org/10.1007/s00422-020-00851-9

    Article  MATH  Google Scholar 

  26. Wirekoh, J., Park, Y.L.: Design of flat pneumatic artificial muscles. Smart Materi. Struct. 26(3), 035009 (2017). https://doi.org/10.1088/1361-665X/aa5496

    Article  Google Scholar 

  27. Wirekoh, J., Valle, L., Pol, N., Park, Y.L.: Sensorized, flat, pneumatic artificial muscle embedded with biomimetic microfluidic sensors for proprioceptive feedback. Soft Robot. 6(6), 768–777 (2019). https://doi.org/10.1089/soro.2018.0110

    Article  Google Scholar 

  28. Yu, S.N., Crago, P.E., Chiel, H.J.: Biomechanical properties and a kinetic simulation model of the smooth muscle I2 in the buccal mass of Aplysia. Biol. Cybern. 81(5–6), 505–513 (1999). https://doi.org/10.1007/s004220050579

    Article  Google Scholar 

Download references

Acknowledgment

We thank Jesse Grupper (Harvard University) and Al Turney (KOGANEI International America, Inc.) for help in developing the pneumatic controller.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria A. Webster-Wood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dai, K. et al. (2022). SLUGBOT, an Aplysia-Inspired Robotic Grasper for Studying Control. In: Hunt, A., et al. Biomimetic and Biohybrid Systems. Living Machines 2022. Lecture Notes in Computer Science(), vol 13548. Springer, Cham. https://doi.org/10.1007/978-3-031-20470-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20470-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20469-2

  • Online ISBN: 978-3-031-20470-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics