Use of Classification Techniques for the Analysis of Data Related to COVID-19 in México | SpringerLink
Skip to main content

Use of Classification Techniques for the Analysis of Data Related to COVID-19 in México

  • Conference paper
  • First Online:
Advanced Research in Technologies, Information, Innovation and Sustainability (ARTIIS 2022)

Abstract

SARS-CoV-2 has bought many challenges to the world, socially, economically, and healthy habits. Even to those that have not experienced the sickness itself, and even though it has changed the lifestyle of the people across the world nation wise the effects of COVID-19 need to be analyzed and understood, analyzing a large amount of data is a process by itself, in this document details the analysis of the data collected from México by the Secretary of Health, the data was analyzed by implementing statistics, and classification methods known as K-Means, C&R Tree and TwoStep Cluster, using processed and unprocessed data. With the main emphasis on K-means. The study has the purpose of detecting what makes the highest impact on a person, to get sick, and succumb to the effects of the disease. In the study, it was found that in México the age of risk is at its highest at the age of 57, and the ones at the highest risk of mortality are those with hypertension and obesity, with those that present both at the age of 57 having a 19.37% of death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. United Nations : Coronavirus | United Nations. United Nations (2020). https://www.un.org/en/coronavirus

  2. Bülent, Ç.A.K.A.L.: Origin of SARS-CoV-2. Turkiye Klinikleri Journal of Medical Ethics-Law and History 28(3), 499–507 (2020). https://doi.org/10.5336/mdethic.2020-76286

    Article  Google Scholar 

  3. Reimers, F.M. (ed.): Primary and Secondary Education During Covid-19: Disruptions to Educational Opportunity During a Pandemic. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-030-81500-4

    Book  Google Scholar 

  4. Matovu, J.K.B., Kabwama, S.N., Ssekamatte, T., Ssenkusu, J., Wanyenze, R.K.: COVID-19 Awareness, Adoption of COVID-19 Preventive Measures, and Effects of COVID-19 Lockdown Among Adolescent Boys and Young Men in Kampala, Uganda. J. Community Health 46(4), 842–853 (2021). https://doi.org/10.1007/s10900-021-00961-w

    Article  Google Scholar 

  5. Bottan, N., Hoffmann, B., Vera-Cossio, D.: The unequal impact of the coronavirus pandemic: Evidence from seventeen developing countries. PLoS ONE, 15, e0239797 (2020). https://doi.org/10.1371/journal.pone.0239797

  6. Zhang, P.: Real-time AI prediction for major adverse cardiac events in emergency department patients with chest pain. Scandinavian J. Trauma, Resuscitation Emerg. Med., 28(1), 93 (2020) https://doi.org/10.1186/s13049-020-00786-x

  7. IBM Corporation: C&R Tree node - IBM Documentation (2022). https://www.ibm.com/docs/en/cloud-paks/cp-data/4.0?topic=modeling-cr-tree-node

  8. TwoStep Cluster Analysis - IBM Documentation. (n.d.). July 18 (2022). https://www.ibm.com/docs/en/spss-statistics/23.0.0?topic=option-twostep-cluster-analysis%0Ahttps://www.ibm.com/docs/en/spss-statistics/24.0.0?topic=option-twostep-cluster-analysis%0Ahttps://www.ibm.com/docs/en/spss-statistics/27.0.0?topic=features-twostep-clu

    Google Scholar 

  9. IBM Corporation: K-Means node - IBM Documentation (2022). https://www.ibm.com/docs/en/cloud-paks/cp-data/4.0?topic=modeling-k-means-nodes

  10. Mannor, S., et al.: K-Means Clustering. Encyclopedia of Machine Learning, pp. 563–564 (2011). https://doi.org/10.1007/978-0-387-30164-8_425

  11. Sinaga, K.P., Yang, M.S.: Unsupervised K-means clustering algorithm. IEEE. Access 8, 80716–80727 (2020). https://doi.org/10.1109/ACCESS.2020.2988796

    Article  Google Scholar 

  12. Jeffares, A.: K-means: A Complete Introduction. K-means is an unsupervised clustering… | by Alan Jeffares | Towards Data Science. Towards Data Science (2019). https://towardsdatascience.com/k-means-a-complete-introduction-1702af9cd8c

  13. Uddin, S., Khan, A., Hossain, M.E., Moni, M.A.: Comparing different supervised machine learning algorithms for disease prediction. BMC Med. Inform. Decis. Mak. 19(1), 1–16 (2019). https://doi.org/10.1186/s12911-019-1004-8

    Article  Google Scholar 

  14. Secretaría de Salud.: Datos Abiertos - Dirección General de Epidemiología | Secretaría de Salud | Gobierno | gob.mx. Gob. (2020). https://www.gob.mx/salud/documentos/datos-abiertos-152127

  15. Secretaría de salud.: COVID-19 Tablero México - CONACYT - CentroGeo - GeoInt - DataLab. Coronavirus (2020). https://datos.covid-19.conacyt.mx/%0Ahttps://datos.covid-19.conacyt.mx/%0Ahttps://datos.covid-19.conacyt.mx/#DOView%0Ahttps://datos.covid-19.conacyt.mx/#COMNac%0Ahttps://coronavirus.gob.mx/datos/#DownZCSV

    Google Scholar 

  16. Gobierno de México.: Datos Abiertos de México - Información referente a casos COVID-19 en México. Secretaría de Salud. (2021). https://datos.gob.mx/busca/dataset/informacion-referente-a-casos-covid-19-en-mexico

  17. Secretaria de Salud.: Secretaría de Salud | Gobierno | gob.mx. ¿Qué Hacemos? (2020). https://www.gob.mx/salud%0Ahttps://www.gob.mx/salud/que-hacemos

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Rael Núñez-Harper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Núñez-Harper, I.R., Marquez, B.Y., Alanis, A. (2022). Use of Classification Techniques for the Analysis of Data Related to COVID-19 in México. In: Guarda, T., Portela, F., Augusto, M.F. (eds) Advanced Research in Technologies, Information, Innovation and Sustainability. ARTIIS 2022. Communications in Computer and Information Science, vol 1675. Springer, Cham. https://doi.org/10.1007/978-3-031-20319-0_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20319-0_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20318-3

  • Online ISBN: 978-3-031-20319-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics