Abstract
SARS-CoV-2 has bought many challenges to the world, socially, economically, and healthy habits. Even to those that have not experienced the sickness itself, and even though it has changed the lifestyle of the people across the world nation wise the effects of COVID-19 need to be analyzed and understood, analyzing a large amount of data is a process by itself, in this document details the analysis of the data collected from México by the Secretary of Health, the data was analyzed by implementing statistics, and classification methods known as K-Means, C&R Tree and TwoStep Cluster, using processed and unprocessed data. With the main emphasis on K-means. The study has the purpose of detecting what makes the highest impact on a person, to get sick, and succumb to the effects of the disease. In the study, it was found that in México the age of risk is at its highest at the age of 57, and the ones at the highest risk of mortality are those with hypertension and obesity, with those that present both at the age of 57 having a 19.37% of death.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
United Nations : Coronavirus | United Nations. United Nations (2020). https://www.un.org/en/coronavirus
Bülent, Ç.A.K.A.L.: Origin of SARS-CoV-2. Turkiye Klinikleri Journal of Medical Ethics-Law and History 28(3), 499–507 (2020). https://doi.org/10.5336/mdethic.2020-76286
Reimers, F.M. (ed.): Primary and Secondary Education During Covid-19: Disruptions to Educational Opportunity During a Pandemic. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-030-81500-4
Matovu, J.K.B., Kabwama, S.N., Ssekamatte, T., Ssenkusu, J., Wanyenze, R.K.: COVID-19 Awareness, Adoption of COVID-19 Preventive Measures, and Effects of COVID-19 Lockdown Among Adolescent Boys and Young Men in Kampala, Uganda. J. Community Health 46(4), 842–853 (2021). https://doi.org/10.1007/s10900-021-00961-w
Bottan, N., Hoffmann, B., Vera-Cossio, D.: The unequal impact of the coronavirus pandemic: Evidence from seventeen developing countries. PLoS ONE, 15, e0239797 (2020). https://doi.org/10.1371/journal.pone.0239797
Zhang, P.: Real-time AI prediction for major adverse cardiac events in emergency department patients with chest pain. Scandinavian J. Trauma, Resuscitation Emerg. Med., 28(1), 93 (2020) https://doi.org/10.1186/s13049-020-00786-x
IBM Corporation: C&R Tree node - IBM Documentation (2022). https://www.ibm.com/docs/en/cloud-paks/cp-data/4.0?topic=modeling-cr-tree-node
TwoStep Cluster Analysis - IBM Documentation. (n.d.). July 18 (2022). https://www.ibm.com/docs/en/spss-statistics/23.0.0?topic=option-twostep-cluster-analysis%0Ahttps://www.ibm.com/docs/en/spss-statistics/24.0.0?topic=option-twostep-cluster-analysis%0Ahttps://www.ibm.com/docs/en/spss-statistics/27.0.0?topic=features-twostep-clu
IBM Corporation: K-Means node - IBM Documentation (2022). https://www.ibm.com/docs/en/cloud-paks/cp-data/4.0?topic=modeling-k-means-nodes
Mannor, S., et al.: K-Means Clustering. Encyclopedia of Machine Learning, pp. 563–564 (2011). https://doi.org/10.1007/978-0-387-30164-8_425
Sinaga, K.P., Yang, M.S.: Unsupervised K-means clustering algorithm. IEEE. Access 8, 80716–80727 (2020). https://doi.org/10.1109/ACCESS.2020.2988796
Jeffares, A.: K-means: A Complete Introduction. K-means is an unsupervised clustering… | by Alan Jeffares | Towards Data Science. Towards Data Science (2019). https://towardsdatascience.com/k-means-a-complete-introduction-1702af9cd8c
Uddin, S., Khan, A., Hossain, M.E., Moni, M.A.: Comparing different supervised machine learning algorithms for disease prediction. BMC Med. Inform. Decis. Mak. 19(1), 1–16 (2019). https://doi.org/10.1186/s12911-019-1004-8
Secretaría de Salud.: Datos Abiertos - Dirección General de Epidemiología | Secretaría de Salud | Gobierno | gob.mx. Gob. (2020). https://www.gob.mx/salud/documentos/datos-abiertos-152127
Secretaría de salud.: COVID-19 Tablero México - CONACYT - CentroGeo - GeoInt - DataLab. Coronavirus (2020). https://datos.covid-19.conacyt.mx/%0Ahttps://datos.covid-19.conacyt.mx/%0Ahttps://datos.covid-19.conacyt.mx/#DOView%0Ahttps://datos.covid-19.conacyt.mx/#COMNac%0Ahttps://coronavirus.gob.mx/datos/#DownZCSV
Gobierno de México.: Datos Abiertos de México - Información referente a casos COVID-19 en México. Secretaría de Salud. (2021). https://datos.gob.mx/busca/dataset/informacion-referente-a-casos-covid-19-en-mexico
Secretaria de Salud.: Secretaría de Salud | Gobierno | gob.mx. ¿Qué Hacemos? (2020). https://www.gob.mx/salud%0Ahttps://www.gob.mx/salud/que-hacemos
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Núñez-Harper, I.R., Marquez, B.Y., Alanis, A. (2022). Use of Classification Techniques for the Analysis of Data Related to COVID-19 in México. In: Guarda, T., Portela, F., Augusto, M.F. (eds) Advanced Research in Technologies, Information, Innovation and Sustainability. ARTIIS 2022. Communications in Computer and Information Science, vol 1675. Springer, Cham. https://doi.org/10.1007/978-3-031-20319-0_39
Download citation
DOI: https://doi.org/10.1007/978-3-031-20319-0_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20318-3
Online ISBN: 978-3-031-20319-0
eBook Packages: Computer ScienceComputer Science (R0)