Optimization of a Self-organized Collective Motion in a Robotic Swarm | SpringerLink
Skip to main content

Optimization of a Self-organized Collective Motion in a Robotic Swarm

  • Conference paper
  • First Online:
Swarm Intelligence (ANTS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13491))

Included in the following conference series:

Abstract

A novel collective organization method is proposed in this paper to improve the performance of the former Active Elastic Sheet (AES) algorithm by applying the Particle Swarm Optimization technique. Replacing the manual parameters tuning of the AES model with an evolutionary-based method leads the swarm to remain stable meanwhile the agents make a perfect alignment exploiting less energy. The proposed algorithm utilizes a hybrid cost function including the alignment error, interaction force, and time to consider all the important criteria for perfect swarm behavior. The Monte-Carlo simulation evaluated the algorithm’s performance to establish its effectiveness in different situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8579
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10724
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/mbahaidarah/AES_PSO.

References

  1. Ali, Z.A., Han, Z., Masood, R.J.: Collective motion and self-organization of a swarm of UAVs: a cluster-based architecture. Sensors 21(11), 3820 (2021)

    Article  Google Scholar 

  2. Ban, Z., Hu, J., Lennox, B., Arvin, F.: Self-organised collision-free flocking mechanism in heterogeneous robot swarms. Mob. Netw. Appl. 26, 1–11 (2021)

    Article  Google Scholar 

  3. Ban, Z., West, C., Lennox, B., Arvin, F.: Self-organised flocking with simulated homogeneous robotic swarm. In: Gao, H., Wang, X., Iqbal, M., Yin, Y., Yin, J., Gu, N. (eds.) CollaborateCom 2020. LNICST, vol. 350, pp. 3–17. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67540-0_1

    Chapter  Google Scholar 

  4. Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraula, G., Bonabeau, E.: Self-organization in biological systems. In: Self-organization in Biological Systems. Princeton University Press (2020)

    Google Scholar 

  5. Cavagna, A., et al.: Flocking and turning: a new model for self-organized collective motion. J. Stat. Phys. 158(3), 601–627 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chaté, H., Ginelli, F., Grégoire, G., Raynaud, F.: Collective motion of self-propelled particles interacting without cohesion. Phys. Rev. E 77(4), 046113 (2008)

    Article  Google Scholar 

  7. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

    Article  Google Scholar 

  8. Ferrante, E., Turgut, A.E., Dorigo, M., Huepe, C.: Collective motion dynamics of active solids and active crystals. New J. Phys. 15(9), 095011 (2013)

    Article  Google Scholar 

  9. Ferrante, E., Turgut, A.E., Dorigo, M., Huepe, C.: Elasticity-based mechanism for the collective motion of self-propelled particles with springlike interactions: a model system for natural and artificial swarms. Phys. Rev. Lett. 111(26), 268302 (2013)

    Article  Google Scholar 

  10. Grossman, D., Aranson, I., Jacob, E.B.: Emergence of agent swarm migration and vortex formation through inelastic collisions. New J. Phys. 10(2), 023036 (2008)

    Article  Google Scholar 

  11. Ihle, T.: Chapman–Enskog expansion for the Vicsek model of self-propelled particles. J. Stat. Mech: Theory Exp. 2016(8), 083205 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 1995-International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)

    Google Scholar 

  13. Lim, S., Song, Y., Choi, J., Myung, H., Lim, H., Oh, H.: Decentralized hybrid flocking guidance for a swarm of small UAVs. In: 2019 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED UAS), pp. 287–296. IEEE (2019)

    Google Scholar 

  14. Liu, Z., Turgut, A.E., Lennox, B., Arvin, F.: Self-organised flocking of robotic swarm in cluttered environments. In: Fox, C., Gao, J., Ghalamzan Esfahani, A., Saaj, M., Hanheide, M., Parsons, S. (eds.) TAROS 2021. LNCS (LNAI), vol. 13054, pp. 126–135. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89177-0_13

    Chapter  Google Scholar 

  15. Menzel, A.M., Ohta, T.: Soft deformable self-propelled particles. EPL (Europhys. Lett.) 99(5), 58001 (2012)

    Article  Google Scholar 

  16. Michel, O.: Cyberbotics Ltd. Webots™: professional mobile robot simulation. Int. J. Adv. Robot. Syst. 1(1), 5 (2004)

    Google Scholar 

  17. Raoufi, M., Turgut, A.E., Arvin, F.: Self-organized collective motion with a simulated real robot swarm. In: Althoefer, K., Konstantinova, J., Zhang, K. (eds.) TAROS 2019. LNCS (LNAI), vol. 11649, pp. 263–274. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23807-0_22

    Chapter  Google Scholar 

  18. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, pp. 25–34 (1987)

    Google Scholar 

  19. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75(6), 1226 (1995)

    Article  MathSciNet  Google Scholar 

  20. Zheng, Y., Huepe, C., Han, Z.: Experimental capabilities and limitations of a position-based control algorithm for swarm robotics. Adapt. Behav. 30, 19–35 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the EU H2020-FET RoboRoyale (964492).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mazen Bahaidarah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bahaidarah, M., Bana, F.R., Turgut, A.E., Marjanovic, O., Arvin, F. (2022). Optimization of a Self-organized Collective Motion in a Robotic Swarm. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2022. Lecture Notes in Computer Science, vol 13491. Springer, Cham. https://doi.org/10.1007/978-3-031-20176-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20176-9_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20175-2

  • Online ISBN: 978-3-031-20176-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics