Abstract
A novel collective organization method is proposed in this paper to improve the performance of the former Active Elastic Sheet (AES) algorithm by applying the Particle Swarm Optimization technique. Replacing the manual parameters tuning of the AES model with an evolutionary-based method leads the swarm to remain stable meanwhile the agents make a perfect alignment exploiting less energy. The proposed algorithm utilizes a hybrid cost function including the alignment error, interaction force, and time to consider all the important criteria for perfect swarm behavior. The Monte-Carlo simulation evaluated the algorithm’s performance to establish its effectiveness in different situations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ali, Z.A., Han, Z., Masood, R.J.: Collective motion and self-organization of a swarm of UAVs: a cluster-based architecture. Sensors 21(11), 3820 (2021)
Ban, Z., Hu, J., Lennox, B., Arvin, F.: Self-organised collision-free flocking mechanism in heterogeneous robot swarms. Mob. Netw. Appl. 26, 1–11 (2021)
Ban, Z., West, C., Lennox, B., Arvin, F.: Self-organised flocking with simulated homogeneous robotic swarm. In: Gao, H., Wang, X., Iqbal, M., Yin, Y., Yin, J., Gu, N. (eds.) CollaborateCom 2020. LNICST, vol. 350, pp. 3–17. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67540-0_1
Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraula, G., Bonabeau, E.: Self-organization in biological systems. In: Self-organization in Biological Systems. Princeton University Press (2020)
Cavagna, A., et al.: Flocking and turning: a new model for self-organized collective motion. J. Stat. Phys. 158(3), 601–627 (2015)
Chaté, H., Ginelli, F., Grégoire, G., Raynaud, F.: Collective motion of self-propelled particles interacting without cohesion. Phys. Rev. E 77(4), 046113 (2008)
Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)
Ferrante, E., Turgut, A.E., Dorigo, M., Huepe, C.: Collective motion dynamics of active solids and active crystals. New J. Phys. 15(9), 095011 (2013)
Ferrante, E., Turgut, A.E., Dorigo, M., Huepe, C.: Elasticity-based mechanism for the collective motion of self-propelled particles with springlike interactions: a model system for natural and artificial swarms. Phys. Rev. Lett. 111(26), 268302 (2013)
Grossman, D., Aranson, I., Jacob, E.B.: Emergence of agent swarm migration and vortex formation through inelastic collisions. New J. Phys. 10(2), 023036 (2008)
Ihle, T.: Chapman–Enskog expansion for the Vicsek model of self-propelled particles. J. Stat. Mech: Theory Exp. 2016(8), 083205 (2016)
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 1995-International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)
Lim, S., Song, Y., Choi, J., Myung, H., Lim, H., Oh, H.: Decentralized hybrid flocking guidance for a swarm of small UAVs. In: 2019 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED UAS), pp. 287–296. IEEE (2019)
Liu, Z., Turgut, A.E., Lennox, B., Arvin, F.: Self-organised flocking of robotic swarm in cluttered environments. In: Fox, C., Gao, J., Ghalamzan Esfahani, A., Saaj, M., Hanheide, M., Parsons, S. (eds.) TAROS 2021. LNCS (LNAI), vol. 13054, pp. 126–135. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89177-0_13
Menzel, A.M., Ohta, T.: Soft deformable self-propelled particles. EPL (Europhys. Lett.) 99(5), 58001 (2012)
Michel, O.: Cyberbotics Ltd. Webots™: professional mobile robot simulation. Int. J. Adv. Robot. Syst. 1(1), 5 (2004)
Raoufi, M., Turgut, A.E., Arvin, F.: Self-organized collective motion with a simulated real robot swarm. In: Althoefer, K., Konstantinova, J., Zhang, K. (eds.) TAROS 2019. LNCS (LNAI), vol. 11649, pp. 263–274. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23807-0_22
Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, pp. 25–34 (1987)
Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75(6), 1226 (1995)
Zheng, Y., Huepe, C., Han, Z.: Experimental capabilities and limitations of a position-based control algorithm for swarm robotics. Adapt. Behav. 30, 19–35 (2020)
Acknowledgements
This work was partially supported by the EU H2020-FET RoboRoyale (964492).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Bahaidarah, M., Bana, F.R., Turgut, A.E., Marjanovic, O., Arvin, F. (2022). Optimization of a Self-organized Collective Motion in a Robotic Swarm. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2022. Lecture Notes in Computer Science, vol 13491. Springer, Cham. https://doi.org/10.1007/978-3-031-20176-9_31
Download citation
DOI: https://doi.org/10.1007/978-3-031-20176-9_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20175-2
Online ISBN: 978-3-031-20176-9
eBook Packages: Computer ScienceComputer Science (R0)