Abstract
Grammatical evolution can be used to learn bio-inspired solutions to many distributed mulitagent tasks, but the programs learned by the agents are often not resilient to perturbations in the world. Biological inspiration from bacteria suggests that ongoing evolution can enable resilience, but traditional grammatical evolution algorithms learn too slowly to mimic rapid evolution because they utilize only vertical, parent-to-child genetic variation. Prior work with the BeTr-GEESE grammatical evolution algorithm showed that individual agents who use both vertical and lateral gene transfer rapidly learn programs that perform one step in a multi-step problem even though the programs cannot perform all required subtasks. This paper shows that BeTr-GEESE can use ongoing evolution to produce resilient collective behaviors on two goal-oriented spatial tasks, foraging and nest maintenance, in the presence of different types of perturbation. The paper then explores when and why BeTr-GEESE succeeds, emphasizing two potentially generalizable properties: modularity and locality. Modular programs enable real-time lateral transfer, leading to resilience. Locality means that the appropriate phenotypic behaviors are local to specific regions of the world (spatial locality) and that recently useful behaviors are likely to be useful again in the near future (temporal locality).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Divisible and additive multiagent tasks can be broken into subtasks achievable by individual programs that each contribute to the group problem to be solved [65].
References
Bongard, J.: Morphological change in machines accelerates the evolution of robust behavior. Proc. Natl. Acad. Sci. 108(4), 1234–1239 (2011)
Bongard, J.C.: Accelerating self-modeling in cooperative robot teams. IEEE Trans. Evol. Comput. 13(2), 321–332 (2008)
Bredeche, N., Montanier, J.M., Liu, W., Winfield, A.F.: Environment-driven distributed evolutionary adaptation in a population of autonomous robotic agents. Math. Comput. Model. Dyn. Syst. 18(1), 101–129 (2012)
Brooks, R.: A robust layered control system for a mobile robot. IEEE J. Robot. Autom. 2(1), 14–23 (1986)
Canciani, F., Talamali, M.S., Marshall, J.A., Bose, T., Reina, A.: Keep calm and vote on: swarm resiliency in collective decision making. In: Proceedings of Workshop Resilient Robot Teams of the 2019 IEEE International Conference on Robotics and Automation (ICRA 2019), p. 4 (2019)
Cheng, J., Cheng, W., Nagpal, R.: Robust and self-repairing formation control for swarms of mobile agents. In: AAAI, vol. 5 (2005)
Cliff, D., Husbands, P., Harvey, I., et al.: Evolving visually guided robots. From Animals Animats 2, 374–383 (1993)
Colledanchise, M., Ögren, P.: Behavior trees in robotics and al: an introduction (2018)
Črepinšek, M., Kosar, T., Mernik, M., Cervelle, J., Forax, R., Roussel, G.: On automata and language based grammar metrics. Comput. Sci. Inf. Syst. 14, 309–329 (2010)
Črepinšek, M., Liu, S.H., Mernik, M.: Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput. Surv. (CSUR) 45(3), 1–33 (2013)
Doncieux, S., Bredeche, N., Mouret, J.B., Eiben, A.E.G.: Evolutionary robotics: what, why, and where to. Front. Robot. AI 2, 4 (2015)
Doncieux, S., Mouret, J.B., Bredeche, N., Padois, V.: Evolutionary robotics: exploring new horizons. In: Doncieux, S., Bredèche, N., Mouret, J.B. (eds.) New Horizons in Evolutionary Robotics. Studies in Computational Intelligence, vol. 341, pp. 3–25. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18272-3_1
Doyle, J.C., Francis, B.A., Tannenbaum, A.R.: Feedback Control Theory. Courier Corporation (2013)
Duarte, M., et al.: Evolution of collective behaviors for a real swarm of aquatic surface robots. PLoS One 11(3), e0151834 (2016)
Eiben, A.E., Haasdijk, E., Bredeche, N.: Embodied, on-line, on-board evolution for autonomous robotics (2010)
Engebråten, S.A., Moen, J., Yakimenko, O., Glette, K.: Evolving a repertoire of controllers for a multi-function swarm. In: Sim, K., Kaufmann, P. (eds.) EvoApplications 2018. LNCS, vol. 10784, pp. 734–749. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77538-8_49
Fenton, M., McDermott, J., Fagan, D., Forstenlechner, S., Hemberg, E., O’Neill, M.: PonyGE2: grammatical evolution in Python. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 1194–1201 (2017)
Ferrante, E., Duéñez-Guzmán, E., Turgut, A.E., Wenseleers, T.: GESwarm: grammatical evolution for the automatic synthesis of collective behaviors in swarm robotics. In: Proceedings of the 15th Annual GECCO Conference, pp. 17–24. ACM (2013)
Ferrante, E., Turgut, A.E., Duéñez-Guzmán, E., Dorigo, M., Wenseleers, T.: Evolution of self-organized task specialization in robot swarms. PLoS Comput. Biol. 11(8), e1004273 (2015)
Goh, C.K., Tan, K.C.: Evolving the tradeoffs between pareto-optimality and robustness in multi-objective evolutionary algorithms. In: Yang, S., Ong, Y.S., Jin, Y. (eds.) Evolutionary Computation in Dynamic and Uncertain Environments, vol. 51, pp. 457–478. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-49774-5_20
Gordon, D.M.: Ant Encounters. Princeton University Press, Princeton (2010)
Gunderson, L.H.: Ecological resilience-in theory and application. Annu. Rev. Ecol. Syst. 31(1), 425–439 (2000)
Hall, J.P., Brockhurst, M.A., Harrison, E.: Sampling the mobile gene pool: innovation via horizontal gene transfer in bacteria. Philos. Trans. Roy. Soc. B: Biol. Sci. 372(1735), 20160424 (2017)
Holling, C.S.: Engineering resilience versus ecological resilience. Eng. Ecol. Constraints 31(1996), 32 (1996)
Jablonka, E., Lamb, M.J.: Evolution in Four Dimensions, Revised Edition: Genetic, Epigenetic, Behavioral, and Symbolic Variation in the History of Life. MIT Press, Cambridge (2014)
Jakobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: the use of simulation in evolutionary robotics. In: Morán, F., Moreno, A., Merelo, J.J., Chacón, P. (eds.) ECAL 1995. LNCS, vol. 929, pp. 704–720. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59496-5_337
Johnson, M., Brown, D.S.: Evolving and controlling perimeter, rendezvous, and foraging behaviors in a computation-free robot swarm. Technical report, Air Force Research Laboratory/RISC Rome United States (2016)
Kazil, J., Masad, D., Crooks, A.: Utilizing python for agent-based modeling: the mesa framework. In: Thomson, R., Bisgin, H., Dancy, C., Hyder, A., Hussain, M. (eds.) SBP-BRiMS 2020. LNCS, vol. 12268, pp. 308–317. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61255-9_30
König, L., Mostaghim, S., Schmeck, H.: Decentralized evolution of robotic behavior using finite state machines. Intl. J. Intell. Comput. Cybern. 2(4), 695–723 (2009)
Koza, J.R.: Genetic programming as a means for programming computers by natural selection. Stat. Comput. 4(2), 87–112 (1994)
Kriesel, D.M.M., Cheung, E., Sitti, M., Lipson, H.: Beanbag robotics: robotic swarms with 1-DoF units. In: Dorigo, M., Birattari, M., Blum, C., Clerc, M., Stützle, T., Winfield, A.F.T. (eds.) ANTS 2008. LNCS, vol. 5217, pp. 267–274. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87527-7_26
Kucking, J., Ligot, A., Bozhinoski, D., Birattari, M.: Behavior trees as a control architecture in the automatic design of robot swarms. In: ANTS 2018. IEEE (2018)
Kuckling, J., Van P., V., Birattari, M.: Automatic modular design of behavior trees for robot swarms with communication capabilites. In: EvoApplications, pp. 130–145 (2021)
Lampe, D.J., Witherspoon, D.J., Soto-Adames, F.N., Robertson, H.M.: Recent horizontal transfer of mellifera subfamily mariner transposons into insect lineages representing four different orders shows that selection acts only during horizontal transfer. Mol. Biol. Evol. 20(4), 554–562 (2003)
Lane, N.: The Vital Question: Energy, Evolution, and the Origins of Complex Life. WW Norton & Company (2015)
Leaf, J., Adams, J.A.: Measuring resilience in collective robotic algorithms. In: Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems, pp. 1666–1668 (2022)
Lee, W.P.: Evolving complex robot behaviors. Inf. Sci. 121(1–2), 1–25 (1999)
Lewis, M.A., Fagg, A.H., Solidum, A.: Genetic programming approach to the construction of a neural network for control of a walking robot. In: 1992 Proceedings of IEEE International Conference on Robotics and Automation, pp. 2618–2623. IEEE (1992)
Linksvayer, T.A., Janssen, M.A.: Traits underlying the capacity of ant colonies to adapt to disturbance and stress regimes. Syst. Res. Behav. Sci.: Off. J. Int. Fed. Syst. Res. 26(3), 315–329 (2009)
Mlot, N.J., Tovey, C.A., Hu, D.L.: Fire ants self-assemble into waterproof rafts to survive floods. Proc. Natl. Acad. Sci. 108(19), 7669–7673 (2011)
Nelson, A.L., Barlow, G.J., Doitsidis, L.: Fitness functions in evolutionary robotics: a survey and analysis. Robot. Auton. Syst. 57(4), 345–370 (2009)
Neupane, A., Goodrich, M.A.: Designing emergent swarm behaviors using behavior trees and grammatical evolution. In: Proceedings of the 18th AAMAS Conference, pp. 2138–2140 (2019)
Neupane, A., Goodrich, M.A.: Learning swarm behaviors using grammatical evolution and behavior trees. In: IJCAI, pp. 513–520 (2019)
Neupane, A., Goodrich, M.A., Mercer, E.G.: GEESE: grammatical evolution algorithm for evolution of swarm behaviors. In: Proceedings of the 20th Annual GECCO Conference, pp. 999–1006 (2018)
Neupane, A., Goodrich, M.: Efficiently evolving swarm behaviors using grammatical evolution with PPA-style behavior trees. In: From Cells to Societies: Collective Learning Across Scales (2022)
Nevai, A.L., Passino, K.M., Srinivasan, P.: Stability of choice in the honey bee nest-site selection process. J. Theor. Biol. 263(1), 93–107 (2010)
Noirot, C., Darlington, J.P.: Termite nests: architecture, regulation and defence. In: Abe, T., Bignell, D.E., Higashi, M. (eds.) Termites: Evolution, Sociality, Symbioses, Ecology, pp. 121–139. Springer, Dordrecht (2000). https://doi.org/10.1007/978-94-017-3223-9_6
Ochman, H., Lawrence, J.G., Groisman, E.A.: Lateral gene transfer and the nature of bacterial innovation. Nature 405(6784), 299–304 (2000)
O’neill, M., Ryan, C., Keijzer, M., Cattolico, M.: Crossover in grammatical evolution. Genet. Program. Evolvable Mach. 4(1), 67–93 (2003)
Perez, R., Aron, S.: Adaptations to thermal stress in social insects: recent advances and future directions. Biol. Rev. 95(6), 1535–1553 (2020)
Petrovic, P.: Evolving behavior coordination for mobile robots using distributed finite-state automata. In: Frontiers in Evolutionary Robotics. InTech (2008)
Pintér-Bartha, A., Sobe, A., Elmenreich, W.: Towards the light-comparing evolved neural network controllers and finite state machine controllers. In: Proceedings of the Tenth Workshop on Intelligent Solutions in Embedded Systems, pp. 83–87. IEEE (2012)
Power, J.F., Malloy, B.A.: A metrics suite for grammar-based software. J. Softw. Maint. Evol. Res. Pract. 16(6), 405–426 (2004)
Quammen, D.: The Tangled Tree: A Radical New History of Life. Simon and Schuster, New York (2018)
Reid, C.R., Lutz, M.J., Powell, S., Kao, A.B., Couzin, I.D., Garnier, S.: Army ants dynamically adjust living bridges in response to a cost-benefit trade-off. Proc. Natl. Acad. Sci. 112(49), 15113–15118 (2015)
Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in a thousand-robot swarm. Science 345(6198), 795–799 (2014)
Samples, A.D.: Mache: No-loss trace compaction. In: Proceedings of the 1989 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, pp. 89–97 (1989)
Schwander, T., Rosset, H., Chapuisat, M.: Division of labour and worker size polymorphism in ant colonies: the impact of social and genetic factors. Behav. Ecol. Sociobiol. 59(2), 215–221 (2005)
Seeley, T.D.: The Wisdom of the Hive: The Social Physiology of Honey Bee Colonies. Harvard University Press (2009)
Seeley, T.D.: Honeybee Democracy. Princeton University Press, Princeton (2010)
Simon, H.A.: The Sciences of the Artificial, Reissue of the Third Edition with a New Introduction by John Laird. MIT Press, Cambridge (2019)
Singh, S., Lewis, R.L., Barto, A.G., Sorg, J.: Intrinsically motivated reinforcement learning: an evolutionary perspective. IEEE Trans. Auton. Ment. Dev. 2(2), 70–82 (2010)
Sorenson, E.S., Flanagan, J.K.: Evaluating synthetic trace models using locality surfaces. In: Proceedings of the IEEE International Workshop on Workload Characterization, pp. 23–33 (2002)
Soule, T.: Resilient individuals improve evolutionary search. Artif. Life 12(1), 17–34 (2006)
Steiner, D.I.: Group Process and Productivity. Academic Press, Cambridge (1972)
Stonier, D., Staniaszek, M.: Behavior Tree implementation in Python (2021). https://github.com/splintered-reality/py_trees/
Sumpter, D., Pratt, S.: A modelling framework for understanding social insect foraging. Behav. Ecol. Sociobiol. 53(3), 131–144 (2003)
Sumpter, D.J.: Collective animal behavior. In: Collective Animal Behavior. Princeton University Press (2010)
Swafford, J.M., O’Neill, M.: An examination on the modularity of grammars in grammatical evolutionary design. In: IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2010)
Toffolo, A., Benini, E.: Genetic diversity as an objective in multi-objective evolutionary algorithms. Evol. Comput. 11(2), 151–167 (2003)
Toth, A., Robinson, G.: Evo-devo and the evolution of social behavior: brain gene expression analyses in social insects. In: Cold Spring Harbor Symposia on Quantitative Biology, vol. 74, pp. 419–426. Cold Spring Harbor Laboratory Press (2009)
Trianni, V., Groß, R., Labella, T.H., Şahin, E., Dorigo, M.: Evolving aggregation behaviors in a swarm of robots. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 865–874. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39432-7_93
Ursem, R.K.: Diversity-guided evolutionary algorithms. In: Guervós, J.J.M., Adamidis, P., Beyer, H.-G., Schwefel, H.-P., Fernández-Villacañas, J.-L. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 462–471. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45712-7_45
Varughese, J.C., Thenius, R., Schmickl, T., Wotawa, F.: Quantification and analysis of the resilience of two swarm intelligent algorithms. In: GCAI, pp. 148–161 (2017)
Vistbakka, I., Troubitsyna, E.: Modelling autonomous resilient multi-robotic systems. In: Calinescu, R., Di Giandomenico, F. (eds.) SERENE 2019. LNCS, vol. 11732, pp. 29–45. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30856-8_3
Wagner, G.P., Altenberg, L.: Perspective: complex adaptations and the evolution of evolvability. Evolution 50(3), 967–976 (1996)
Wang, J.X., et al.: Evolving intrinsic motivations for altruistic behavior. arXiv preprint arXiv:1811.05931 (2018)
Yamashita, Y., Tani, J.: Emergence of functional hierarchy in a multiple timescale neural network model: a humanoid robot experiment. PLoS Comput. Biol. 4(11), e1000220 (2008)
Zahadat, P., Hamann, H., Schmickl, T.: Evolving diverse collective behaviors independent of swarm density. In: Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 1245–1246 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
A PPA Grammar
A PPA Grammar
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Neupane, A., Goodrich, M.A. (2022). Learning Resilient Swarm Behaviors via Ongoing Evolution. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2022. Lecture Notes in Computer Science, vol 13491. Springer, Cham. https://doi.org/10.1007/978-3-031-20176-9_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-20176-9_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20175-2
Online ISBN: 978-3-031-20176-9
eBook Packages: Computer ScienceComputer Science (R0)