When Deep Classifiers Agree: Analyzing Correlations Between Learning Order and Image Statistics | SpringerLink
Skip to main content

When Deep Classifiers Agree: Analyzing Correlations Between Learning Order and Image Statistics

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13668))

Included in the following conference series:

  • 2072 Accesses

Abstract

Although a plethora of architectural variants for deep classification has been introduced over time, recent works have found empirical evidence towards similarities in their training process. It haswrapfig been hypothesized that neural networks converge not only to similar representations, but also exhibit a notion of empirical agreement on which data instances are learned first. Following in the latter works’ footsteps, we define a metric to quantify the relationship between such classification agreement over time, and posit that the agreement phenomenon can be mapped to core statistics of the investigated dataset. We empirically corroborate this hypothesis across the CIFAR10, Pascal, ImageNet and KTH-TIPS2 datasets. Our findings indicate that agreement seems to be independent of specific architectures, training hyper-parameters or labels, albeit follows an ordering according to image statistics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmed, N., Natarajan, T., Rao, K.R.: Discrete cosine transform. IEEE Trans. Comput. C-24(1), 90–93 (1974)

    Google Scholar 

  2. Alexe, B., Deselaers, T., Ferrari, V.: Measuring the objectness of image windows. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 34(11), 2189–2202 (2012)

    Article  Google Scholar 

  3. Arpit, D., et al.: A closer look at memorization in deep networks. In: International Conference on Machine Learning (ICML) (2017)

    Google Scholar 

  4. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: International Conference on Machine Learning (ICML) (2009)

    Google Scholar 

  5. Berg, A.C., et al.: Understanding and predicting importance in images. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012)

    Google Scholar 

  6. Byrt, T., Bishop, J., Carlin, J.B.: Bias, prevalence and kappa. J. Clin. Epidemiol. 46(5), 423–429 (1993)

    Article  Google Scholar 

  7. Caelen, O.: A Bayesian interpretation of the confusion matrix. Ann. Math. Artif. Intell. 81(3–4), 429–450 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caputo, B., Hayman, E., Mallikarjuna, P.: Class-specific material categorisation. In: International Conference on Computer Vision (ICCV) (2005)

    Google Scholar 

  9. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2009)

    Google Scholar 

  10. Everingham, M., Eslami, S.M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes challenge: a retrospective. Int. J. Comput. Vision 111(1), 98–136 (2015)

    Article  Google Scholar 

  11. Everingham, M., Van-Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vision 88(2), 303–338 (2010)

    Article  Google Scholar 

  12. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient Graph-Based Image Segmentation. Int. J. Comput. Vision 59, 167–181 (2004)

    Article  MATH  Google Scholar 

  13. Frieden, B.R.: Restoring with maximum likelihood and maximum entropy. J. Optical Soc. America (JOSA) 62(4), 511–518 (1972)

    Article  Google Scholar 

  14. Geirhos, R., Michaelis, C., Wichmann, F.A., Rubisch, P., Bethge, M., Brendel, W.: Imagenet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. International Conference on Learning Representations (ICLR) (2019)

    Google Scholar 

  15. Hacohen, G., Choshen, L., Weinshall, D.: Let’s agree to agree: neural networks share classification order on real datasets. In: International Conference on Learning Representations (ICLR) (2020)

    Google Scholar 

  16. Hacohen, G., Weinshall, D.: On the power of curriculum learning in training deep networks. In: International Conference on Machine Learning (ICML) (2019)

    Google Scholar 

  17. Hacohen, G., Weinshall, D.: Principal components bias in over-parameterizyed linear models, and its manifestation in deep neural networks. J. Mach. Learn. Res. 23, 1–46 (2022)

    MathSciNet  Google Scholar 

  18. Hallgren, K.A.: Computing Inter-Rater Reliability for Observational Data: An Overview and Tutorial. Tutor Quant Methods Psychol. 8(1), 23–34 (2012)

    Article  Google Scholar 

  19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  20. Hermann, K.L., Chen, T., Kornblith, S.: The origins and prevalence of texture bias in convolutional neural networks. In: Neural Information Processing Systems (NeurIPS) 34 (2020)

    Google Scholar 

  21. Hoiem, D., Chodpathumwan, Y., Dai, Q.: Diagnosing error in object detectors. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 340–353. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33712-3_25

    Chapter  Google Scholar 

  22. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269 (2017)

    Google Scholar 

  23. Ilyas, A., Santurkar, S., Tsipras, D., Engstrom, L., Tran, B., Madry, A.: Adversarial examples are not bugs, they are features. In: Neural Information Processing Systems (NeurIPS) (2019)

    Google Scholar 

  24. Ionescu, R.T., Alexe, B., Leordeanu, M., Popescu, M., Papadopoulos, D.P., Ferrari, V.: How hard can it be? estimating the difficulty of visual search in an image. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2157–2166 (2016)

    Google Scholar 

  25. Isola, P., Xiao, J., Parikh, D., Torralba, A., Oliva, A.: What makes a photograph memorable? IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 36(7), 1469–1482 (2014)

    Article  Google Scholar 

  26. Isola, P., Zoran, D., Krishnan, D., Adelson, E.H.: Crisp boundary detection using pointwise mutual information. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 799–814. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9_52

    Chapter  Google Scholar 

  27. Jiang, L., Meng, D., Zhao, Q., Shan, S., Hauptmann, A.G.: Self-paced curriculum learning. In: Proceedings of the National Conference on Artificial Intelligence, vol. 4, pp. 2694–2700 (2015)

    Google Scholar 

  28. Krizhevsky, A.: Learning Multiple Layers of Features from Tiny Images. Technical report Toronto (2009)

    Google Scholar 

  29. Kumar, M., Packer, B., Koller, D., Kumar, P., Packer, B., Koller, D.: Self-paced learning for latent variable models. In: Neural Information Processing Systems (NeurIPS) (2010)

    Google Scholar 

  30. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2323 (1998)

    Article  Google Scholar 

  31. Lee, Y.J., Grauman, K.: Learning the easy things first: Self-paced visual category discovery. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1721–1728 (2011)

    Google Scholar 

  32. Li, Y., Yosinski, J., Clune, J., Lipson, H., Hopcroft, J.: Convergent Learning: do different neural networks learn the same representations? In: International Conference on Learning Representations (ICLR) (2016)

    Google Scholar 

  33. Liu, D., Xiong, Y., Pulli, K., Shapiro, L.: Estimating image segmentation difficulty. In: Perner, P. (ed.) MLDM 2011. LNCS (LNAI), vol. 6871, pp. 484–495. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23199-5_36

    Chapter  Google Scholar 

  34. Maennel, H., et al.: What do neural networks learn when trained with random labels? In: Neural Information Processing Systems (NeurIPS) (2020)

    Google Scholar 

  35. Mangalam, K., Prabhu, V.: Do deep neural networks learn shallow learnable examples first? In: International Conference on Machine Learning (ICML), Deep Phenomena Workshop (2019)

    Google Scholar 

  36. Ortiz-Jiménez, G., Modas, A., Moosavi-Dezfooli, S.M., Frossard, P.: Hold me tight! Influence of discriminative features on deep network boundaries, Neural Information Processing Systems (NeurIPS) (2020)

    Google Scholar 

  37. Peterson, J.C., Battleday, R.M., Griffiths, T.L., Russakovsky, O.: Human uncertainty makes classification more robust. In: International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  38. Pinto, N., Cox, D.D., DiCarlo, J.J.: Why is real-world visual object recognition hard? PLoS Comput. Biol. 4(1), 0151–0156 (2008)

    Article  MathSciNet  Google Scholar 

  39. Russakovsky, O., Deng, J., Huang, Z., Berg, A.C., Fei-Fei, L.: Detecting avocados to Zucchinis: what have we done, and where are we going? In: International Conference on Computer Vision (ICCV) (2013)

    Google Scholar 

  40. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  41. Shah, H., Tamuly, K., Raghunathan, A., Jain, P., Netrapalli, P.: The pitfalls of simplicity bias in neural networks. In: Neural Information Processing Systems (NeurIPS) (2020)

    Google Scholar 

  42. Shwartz-Ziv, R., Tishby, N.: Opening the Black Box of Deep Neural Networks via Information. Why & when Deep Learning works: looking inside Deep Learning ICRI-CI (2017)

    Google Scholar 

  43. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  44. Skilling, J., Bryan, R.: Maximum entropy image reconstruction: general algorithm. Mon. Not. R. Astron. Soc. 211, 111–124 (1984)

    Article  MATH  Google Scholar 

  45. Spain, M., Perona, P.: Some objects are more equal than others: measuring and predicting importance. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 523–536. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88682-2_40

    Chapter  Google Scholar 

  46. Vijayanarasimhan, S., Grauman, K.: What’s it going to cost you? Predicting effort vs. informativeness for multi-label image annotations. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2009)

    Google Scholar 

  47. Wang, L., Hu, L., Gu, J., Wu, Y., Hu, Z., He, K., Hopcroft, J.: Towards understanding learning representations: to what extent do different neural networks learn the same representation. In: Neural Information Processing Systems (NeurIPS) (2018)

    Google Scholar 

  48. Yang, K., Qinami, K., Fei-Fei, L., Deng, J., Russakovsky, O.: Towards fairer datasets: Filtering and balancing the distribution of the people subtree in the ImageNet hierarchy. In: Conference on Fairness, Accountability, and Transparency (FAT), pp. 547–558 (2020)

    Google Scholar 

  49. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep learning requires rethinking generalization. In: International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the German Federal Ministry of Education and Research (BMBF) funded project 01IS19062 “AISEL" and the European Union’s Horizon 2020 project No. 769066 “RESIST".

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iuliia Pliushch .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 11795 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pliushch, I., Mundt, M., Lupp, N., Ramesh, V. (2022). When Deep Classifiers Agree: Analyzing Correlations Between Learning Order and Image Statistics. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13668. Springer, Cham. https://doi.org/10.1007/978-3-031-20074-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20074-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20073-1

  • Online ISBN: 978-3-031-20074-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics