Abstract
When analyzing human motion videos, the output jitters from existing pose estimators are highly-unbalanced with varied estimation errors across frames. Most frames in a video are relatively easy to estimate and only suffer from slight jitters. In contrast, for rarely seen or occluded actions, the estimated positions of multiple joints largely deviate from the ground truth values for a consecutive sequence of frames, rendering significant jitters on them.
To tackle this problem, we propose to attach a dedicated temporal-only refinement network to existing pose estimators for jitter mitigation, named SmoothNet. Unlike existing learning-based solutions that employ spatio-temporal models to co-optimize per-frame precision and temporal smoothness at all the joints, SmoothNet models the natural smoothness characteristics in body movements by learning the long-range temporal relations of every joint without considering the noisy correlations among joints. With a simple yet effective motion-aware fully-connected network, SmoothNet improves the temporal smoothness of existing pose estimators significantly and enhances the estimation accuracy of those challenging frames as a side-effect. Moreover, as a temporal-only model, a unique advantage of SmoothNet is its strong transferability across various types of estimators, modalities, and datasets. Comprehensive experiments on five datasets with eleven popular backbone networks across 2D and 3D pose estimation and body recovery tasks demonstrate the efficacy of the proposed solution. Code is available at https://github.com/cure-lab/SmoothNet.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2D human pose estimation: new benchmark and state of the art analysis. In: Proceedings of the IEEE Conference on computer Vision and Pattern Recognition, pp. 3686–3693 (2014)
Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv arXiv:abs/1803.01271 (2018)
Brownrigg, D.R.: The weighted median filter. Commun. ACM 27(8), 807–818 (1984)
Casiez, G., Roussel, N., Vogel, D.: 1€ filter: a simple speed-based low-pass filter for noisy input in interactive systems. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2527–2530 (2012)
Chen, Y., Wang, Z., Peng, Y., Zhang, Z., Yu, G., Sun, J.: Cascaded pyramid network for multi-person pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7103–7112 (2018)
Choi, H., Moon, G., Chang, J.Y., Lee, K.M.: Beyond static features for temporally consistent 3D human pose and shape from a video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1964–1973 (2021)
Choutas, V., Pavlakos, G., Bolkart, T., Tzionas, D., Black, M.J.: Monocular expressive body regression through body-driven attention. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12355, pp. 20–40. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58607-2_2
Coskun, H., Achilles, F., DiPietro, R.S., Navab, N., Tombari, F.: Long short-term memory kalman filters: recurrent neural estimators for pose regularization. 2017 IEEE International Conference on Computer Vision (ICCV), pp. 5525–5533 (2017)
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Fischman, M.G.: Programming time as a function of number of movement parts and changes in movement direction. J. Mot. Behav. 16(4), 405–423 (1984)
Gauss, J.F., Brandin, C., Heberle, A., Löwe, W.: Smoothing skeleton avatar visualizations using signal processing technology. SN Comput. Sci. 2(6), 1–17 (2021)
Hunter, J.S.: The exponentially weighted moving average. J. Qual. Technol. 18(4), 203–210 (1986)
Hyndman, R.J.: Moving averages (2011)
Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6m: large scale datasets and predictive methods for 3D human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1325–1339 (2013)
Jiang, T., Camgoz, N.C., Bowden, R.: Skeletor: skeletal transformers for robust body-pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3394–3402 (2021)
Joo, H., Neverova, N., Vedaldi, A.: Exemplar fine-tuning for 3d human model fitting towards in-the-wild 3D human pose estimation. In: 2021 International Conference on 3D Vision (3DV), pp. 42–52. IEEE (2021)
Kalman, R.E.: A new approach to linear filtering and prediction problems (1960)
Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end recovery of human shape and pose. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7122–7131 (2018)
Kanazawa, A., Zhang, J.Y., Felsen, P., Malik, J.: Learning 3D human dynamics from video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5614–5623 (2019)
Kim, D.Y., Chang, J.Y.: Attention-based 3D human pose sequence refinement network. Sensors 21(13), 4572 (2021)
Kocabas, M., Athanasiou, N., Black, M.J.: Vibe: video inference for human body pose and shape estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5253–5263 (2020)
Kolotouros, N., Pavlakos, G., Black, M.J., Daniilidis, K.: Learning to reconstruct 3D human pose and shape via model-fitting in the loop. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2252–2261 (2019)
Lee, C.H., Lin, C.R., Chen, M.S.: Sliding-window filtering: an efficient algorithm for incremental mining. In: Proceedings of the Tenth International Conference on Information and Knowledge Management, pp. 263–270 (2001)
Li, J., Bian, S., Zeng, A., Wang, C., Pang, B., Liu, W., Lu, C.: Human pose regression with residual log-likelihood estimation. In: ICCV (2021)
Li, R., Yang, S., Ross, D.A., Kanazawa, A.: AI choreographer: music conditioned 3D dance generation with AIST++. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 13401–13412, October 2021
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Luo, Z., Golestaneh, S.A., Kitani, K.M.: 3D human motion estimation via motion compression and refinement. In: Proceedings of the Asian Conference on Computer Vision (2020)
von Marcard, T., Henschel, R., Black, M.J., Rosenhahn, B., Pons-Moll, G.: Recovering accurate 3D human pose in the wild using IMUs and a moving camera. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 601–617 (2018)
Martinez, J., Hossain, R., Romero, J., Little, J.J.: A simple yet effective baseline for 3D human pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2640–2649 (2017)
Mehta, D., et al.: Monocular 3D human pose estimation in the wild using improved CNN supervision. In: 2017 International Conference on 3D Vision (3DV), pp. 506–516. IEEE (2017)
Mehta, D., et al.: XNect: real-time multi-person 3D motion capture with a single RGB camera. ACM Trans. Graph. (TOG) 39(4), 82-1 (2020)
Mehta, D., et al.: Single-shot multi-person 3D pose estimation from monocular RGB. In: 2018 International Conference on 3D Vision (3DV), pp. 120–130 (2018)
Mehta, D., et al.: VNect: real-time 3D human pose estimation with a single RGB camera. ACM Trans. Graph. (TOG) 36(4), 1–14 (2017)
Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29
Pavllo, D., Feichtenhofer, C., Grangier, D., Auli, M.: 3D human pose estimation in video with temporal convolutions and semi-supervised training. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7753–7762 (2019)
Press, W.H., Teukolsky, S.A.: Savitzky-Golay smoothing filters. Comput. Phys. 4(6), 669–672 (1990)
So, D., Le, Q., Liang, C.: The evolved transformer. In: International Conference on Machine Learning, pp. 5877–5886. PMLR (2019)
Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5693–5703 (2019)
Tripathi, S., Ranade, S., Tyagi, A., Agrawal, A.: Posenet3d: learning temporally consistent 3D human pose via knowledge distillation. In: 2020 International Conference on 3D Vision (3DV), pp. 311–321. IEEE (2020)
Tsuchida, S., Fukayama, S., Hamasaki, M., Goto, M.: AIST dance video database: multi-genre, multi-dancer, and multi-camera database for dance information processing. In: ISMIR, pp. 501–510 (2019)
Van Loan, C.: Computational frameworks for the fast Fourier transform. SIAM (1992)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Véges, M., Lőrincz, A.: Temporal smoothing for 3D human pose estimation and localization for occluded people. In: Yang, H., Pasupa, K., Leung, A.C.-S., Kwok, J.T., Chan, J.H., King, I. (eds.) ICONIP 2020. LNCS, vol. 12532, pp. 557–568. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63830-6_47
Wan, Z., Li, Z., Tian, M., Liu, J., Yi, S., Li, H.: Encoder-decoder with multi-level attention for 3D human shape and pose estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13033–13042 (2021)
Wang, J., Yan, S., Xiong, Y., Lin, D.: Motion guided 3D pose estimation from videos. arXiv abs/2004.13985 (2020)
Young, I.T., Van Vliet, L.J.: Recursive implementation of the gaussian filter. Signal Process. 44(2), 139–151 (1995)
Zeng, A., Sun, X., Huang, F., Liu, M., Xu, Q., Lin, S.: SRNet: improving generalization in 3D human pose estimation with a split-and-recombine approach. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 507–523. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_30
Zeng, A., Sun, X., Yang, L., Zhao, N., Liu, M., Xu, Q.: Learning skeletal graph neural networks for hard 3D pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision (2021)
Zhang, S., Zhang, Y., Bogo, F., Pollefeys, M., Tang, S.: Learning motion priors for 4D human body capture in 3D scenes. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11343–11353 (2021)
Zhao, L., Peng, X., Tian, Y., Kapadia, M., Metaxas, D.N.: Semantic graph convolutional networks for 3D human pose regression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3425–3435 (2019)
Zheng, C., Zhu, S., Mendieta, M., Yang, T., Chen, C., Ding, Z.: 3D human pose estimation with spatial and temporal transformers. arXiv preprint arXiv:2103.10455 (2021)
Zhou, H., et al.: Informer: beyond efficient transformer for long sequence time-series forecasting. In: Proceedings of AAAI (2021)
Zhou, K., Bhatnagar, B.L., Lenssen, J.E., Pons-Moll, G.: TOCH: spatio-temporal object correspondence to hand for motion refinement. arXiv, May 2022
Zhou, Y., Barnes, C., Lu, J., Yang, J., Li, H.: On the continuity of rotation representations in neural networks. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5738–5746 (2019)
Acknowledgement
This work is supported in part by Shenzhen-Hong Kong-Macau Science and Technology Program (Category C) of Shenzhen Science Technology and Innovation Commission under Grant No. SGDX2020110309500101.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zeng, A., Yang, L., Ju, X., Li, J., Wang, J., Xu, Q. (2022). SmoothNet: A Plug-and-Play Network for Refining Human Poses in Videos. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13665. Springer, Cham. https://doi.org/10.1007/978-3-031-20065-6_36
Download citation
DOI: https://doi.org/10.1007/978-3-031-20065-6_36
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20064-9
Online ISBN: 978-3-031-20065-6
eBook Packages: Computer ScienceComputer Science (R0)