Abstract
We present a hybrid classical-quantum framework based on the Frank-Wolfe algorithm, Q-FW, for solving quadratic, linearly-constrained, binary optimization problems on quantum annealers (QA). The computational premise of quantum computers has cultivated the re-design of various existing vision problems into quantum-friendly forms. Experimental QA realisations can solve a particular non-convex problem known as the quadratic unconstrained binary optimization (QUBO). Yet a naive-QUBO cannot take into account the restrictions on the parameters. To introduce additional structure in the parameter space, researchers have crafted ad-hoc solutions incorporating (linear) constraints in the form of regularizers. However, this comes at the expense of a hyper-parameter, balancing the impact of regularization. To date, a true constrained solver of quadratic binary optimization (QBO) problems has lacked. Q-FW first reformulates constrained-QBO as a copositive program (CP), then employs Frank-Wolfe iterations to solve CP while satisfying linear (in)equality constraints. This procedure unrolls the original constrained-QBO into a set of unconstrained QUBOs all of which are solved, in a sequel, on a QA. We use D-Wave Advantage QA to conduct synthetic and real experiments on two important computer vision problems, graph matching and permutation synchronization, which demonstrate that our approach is effective in alleviating the need for an explicit regularization coefficient.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Quantum computers are still in early stages. However, a diverse set of CV experiments present optimistic predictions regarding the future.
- 2.
Throughout the paper we concentrate on the equality constraints and provide a simple modification to satisfy inequality constraints in our supplementary material.
- 3.
Strong duality is a standard assumption for primal-dual methods in optimization.
- 4.
This amounts to computing the top singular vector of \(\hat{\textbf{X}}\) [54].
- 5.
A binary relation P(x, y), is in \(\textrm{FP}^{\textrm{NP}}\) if and only if there is a deterministic polynomial time algorithm that can determine whether P(x, y) holds given both x and y.
- 6.
While still providing a way to handle inequalities in our supplementary material, we leave it as a future work to study problems with inequality constraints.
- 7.
The difference between the lowest and second-lowest energy state/eigen-value.
- 8.
Such sets are easy to obtain by keypoint detection or sampling either on images or on shapes, e.g. by detecting N landmarks per image, in a M-view image collection.
- 9.
Requires solving a combinatorial optimization problem with heuristics.
References
Albash, T., Lidar, D.A.: Adiabatic quantum computation. Rev. Mod. Phys. 90(1), 015002 (2018)
Arrigoni, F., Ricci, E., Pajdla, T.: Multi-frame motion segmentation by combining two-frame results. Int. J. Comput. Vision 130, 1–33 (2022)
Arthur, D., Pusey-Nazzaro, L., et al.: Qubo formulations for training machine learning models. Sci. Rep. 11(1), 1–10 (2021)
Arute, F., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505–510 (2019)
Benkner, M.S., Lähner, Z., Golyanik, V., Wunderlich, C., Theobalt, C., Moeller, M.: Q-match: iterative shape matching via quantum annealing. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7586–7596 (2021)
Bernard, F., Theobalt, C., Moeller, M.: DS*: tighter lifting-free convex relaxations for quadratic matching problems. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018
Birdal, T., Golyanik, V., Theobalt, C., Guibas, L.J.: Quantum permutation synchronization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13122–13133 (2021)
Birdal, T., Simsekli, U.: Probabilistic permutation synchronization using the riemannian structure of the birkhoff polytope. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11105–11116 (2019)
Birdal, T., Simsekli, U., Eken, M.O., Ilic, S.: Bayesian pose graph optimization via bingham distributions and tempered geodesic MCMC. In: Advances in Neural Information Processing Systems, vol. 31 (2018)
Bomze, I.M., Dür, M., De Klerk, E., Roos, C., Quist, A.J., Terlaky, T.: On copositive programming and standard quadratic optimization problems. J. Global Optim. 18(4), 301–320 (2000)
Bomze, I.M., Rinaldi, F., Zeffiro, D.: Frank-wolfe and friends: a journey into projection-free first-order optimization methods. 4OR 19(3), 313–345 (2021)
Born, M., Fock, V.: Beweis des adiabatensatzes. Zeitschrift für Physik 51(3), 165–180 (1928)
Burer, S.: On the copositive representation of binary and continuous nonconvex quadratic programs. Math. Program. 120(2), 479–495 (2009)
Caetano, T.S., McAuley, J.J., Cheng, L., Le, Q.V., Smola, A.J.: Learning graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 31(6), 1048–1058 (2009)
Cai, J., Macready, W.G., Roy, A.: A practical heuristic for finding graph minors. arXiv e-prints (2014)
Cavallaro, G., Willsch, D., Willsch, M., Michielsen, K., Riedel, M.: Approaching remote sensing image classification with ensembles of support vector machines on the d-wave quantum annealer. In: IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (2020)
Chin, T.J., Suter, D., Chng, S.F., Quach, J.: Quantum robust fitting. arXiv preprint arXiv:2006.06986 (2020)
Cho, M., Alahari, K., Ponce, J.: Learning graphs to match. In: International Conference on Computer Vision (ICCV), pp. 25–32 (2013)
Clarkson, K.L.: Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm. ACM Trans. Algorithms (TALG) 6(4), 1–30 (2010)
D-Wave Systems Inc: dwave-system documentation (2022). https://docs.ocean.dwavesys.com/_/downloads/system/en/latest/pdf/. Accessed 05 Mar 2022
Dai, A., Nießner, M., Zollhöfer, M., Izadi, S., Theobalt, C.: Bundlefusion: real-time globally consistent 3D reconstruction using on-the-fly surface reintegration. ACM Trans. Graph. (TOG) 36(4), 76a (2017)
Dattani, N., Szalay, S., Chancellor, N.: Pegasus: the second connectivity graph for large-scale quantum annealing hardware. arXiv e-prints (2019)
De Klerk, E., Pasechnik, D.V.: Approximation of the stability number of a graph via copositive programming. SIAM J. Optim. 12(4), 875–892 (2002)
Deng, H., Birdal, T., Ilic, S.: PPF-FoldNet: unsupervised learning of rotation invariant 3D local descriptors. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 602–618 (2018)
Doan, A.D., Sasdelli, M., Chin, T.J., Suter, D.: A hybrid quantum-classical algorithm for robust fitting. arXiv preprint arXiv:2201.10110 (2022)
Dukanovic, I., Rendl, F.: Copositive programming motivated bounds on the stability and the chromatic numbers. Math. Program. 121(2), 249–268 (2010)
Dür, M.: Copositive programming-a survey. In: Diehl, M., Glineur, F., Jarlebring, E., Michiels, W. (eds.) Recent Advances in Optimization and its Applications in Engineering, pp. 3–20. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12598-0_1
Dür, M., Rendl, F.: Conic optimization: a survey with special focus on copositive optimization and binary quadratic problems. EURO J. Comput. Optim. 9, 100021 (2021)
Farhi, E., Goldstone, J., Gutmann, S., Lapan, J., Lundgren, A., Preda, D.: A quantum adiabatic evolution algorithm applied to random instances of an np-complete problem. Science 292(5516), 472–475 (2001)
Frank, M., Wolfe, P., et al.: An algorithm for quadratic programming. Nav. Res. Logist. Q. 3(1–2), 95–110 (1956)
Gao, M., Lahner, Z., Thunberg, J., Cremers, D., Bernard, F.: Isometric multi-shape matching. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14183–14193 (2021)
Golyanik, V., Theobalt, C.: A quantum computational approach to correspondence problems on point sets. In: Computer Vision and Pattern Recognition (CVPR) (2020)
Govindu, V.M.: Lie-algebraic averaging for globally consistent motion estimation. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, vol. 1, p. I. IEEE (2004)
Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996)
Hazan, E.: Sparse approximate solutions to semidefinite programs. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 306–316. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78773-0_27
Hu, F., Wang, B.N., Wang, N., Wang, C.: Quantum machine learning with d-wave quantum computer. Quantum Eng. 1(2), e12 (2019)
Huang, J., Birdal, T., Gojcic, Z., Guibas, L.J., Hu, S.M.: Multiway non-rigid point cloud registration via learned functional map synchronization. arXiv preprint arXiv:2111.12878 (2021)
Huang, J., et al.: Multibodysync: multi-body segmentation and motion estimation via 3D scan synchronization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7108–7118 (2021)
Huang, Q.X., Guibas, L.: Consistent shape maps via semidefinite programming. In: Eurographics/ACM SIGGRAPH Symposium on Geometry Processing (SGP). Eurographics Association (2013)
Huber, D.F., Hebert, M.: Fully automatic registration of multiple 3D data sets. Image Vis. Comput. 21(7), 637–650 (2003)
Jaggi, M.: Revisiting frank-wolfe: projection-free sparse convex optimization. In: International Conference on Machine Learning, pp. 427–435. PMLR (2013)
Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse ising model. Phys. Rev. E 58, 5355–5363 (1998)
Kezurer, I., Kovalsky, S.Z., Basri, R., Lipman, Y.: Tight relaxation of quadratic matching. In: Computer Graphics Forum, vol. 34, pp. 115–128. Wiley Online Library (2015)
Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 1097–1105 (2012)
Kuhn, H.W.: The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 2(1–2), 83–97 (1955)
Lacoste-Julien, S., Jaggi, M.: On the global linear convergence of frank-wolfe optimization variants. In: Advances in Neural Information Processing Systems, vol. 28 (2015)
Lan, G.: The complexity of large-scale convex programming under a linear optimization oracle. arXiv preprint arXiv:1309.5550
Levitin, E., Polyak, B.: Constrained minimization methods. USSR Comput. Math. Math. Phys. 6(5), 1–50 (1966)
Li, J., Ghosh, S.: Quantum-soft QUBO suppression for accurate object detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12374, pp. 158–173. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58526-6_10
Li, X., Larson, M., Hanjalic, A.: Pairwise geometric matching for large-scale object retrieval. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5153–5161 (2015)
Maset, E., Arrigoni, F., Fusiello, A.: Practical and efficient multi-view matching. In: International Conference on Computer Vision (ICCV) (2017)
McGeoch, C., Farré, P.: The advantage system: performance update. Technical report, Technical Report 14-1054A-A, D-Wave Systems Inc., Burnaby, Canada (2021)
Mirsky, L.: Symmetric gauge functions and unitarily invariant norms. Q. J. Math. 11(1), 50–59 (1960)
Munkres, J.: Algorithms for the assignment and transportation problems. J. Soc. Ind. Appl. Math. 5(1), 32–38 (1957)
Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: an open-source SLAM system for monocular, stereo and RGB-D cameras. IEEE Trans. Rob. 33(5), 1255–1262 (2017). https://doi.org/10.1109/TRO.2017.2705103
Neven, H., Denchev, V.S., Rose, G., Macready, W.G.: Qboost: large scale classifier training with adiabatic quantum optimization. In: Asian Conference on Machine Learning (ACML) (2012)
Neven, H., Rose, G., Macready, W.G.: Image recognition with an adiabatic quantum computer I. Mapping to quadratic unconstrained binary optimization. arXiv e-prints (2008)
Nguyen, N.T.T., Kenyon, G.T.: Image classification using quantum inference on the d-wave 2x. arXiv e-prints (2019)
Nielsen, M.A., Chuang, I.: Quantum computation and quantum information (2002)
Povh, J., Rendl, F.: Copositive and semidefinite relaxations of the quadratic assignment problem. Discret. Optim. 6(3), 231–241 (2009)
Technical description of the d-wave quantum processing unit. https://docs.dwavesys.com/docs/latest/doc_qpu.html. Accessed 05 Mar 2022
Quist, A.J., de Klerk, E., Roos, C., Terlaky, T.: Copositive realxation for general quadratic programming. Optim. Methods Softw. 9(1–3), 185–208 (1998)
Sahiner, A., Ergen, T., Pauly, J.M., Pilanci, M.: Vector-output relu neural network problems are copositive programs: convex analysis of two layer networks and polynomial-time algorithms. In: International Conference on Learning Representations (2020)
Sattler, T., Weyand, T., Leibe, B., Kobbelt, L.: Image retrieval for image-based localization revisited (2012)
Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4104–4113 (2016)
Seelbach Benkner, M., Golyanik, V., Theobalt, C., Moeller, M.: Adiabatic quantum graph matching with permutation matrix constraints. In: International Conference on 3D Vision (3DV) (2020)
Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Annual Symposium on Foundations of Computer Science (1994)
Systems, D.: D-wave details product expansion & cross platform roadmap (2021). https://tinyurl.com/yeyknn7y
Xiang, R., Lai, R., Zhao, H.: Efficient and robust shape correspondence via sparsity-enforced quadratic assignment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9513–9522 (2020)
Yasuoka, H.: Computational complexity of quadratic unconstrained binary optimization. arXiv preprint arXiv:2109.10048 (2021)
Yurtsever, A., Fercoq, O., Cevher, V.: A conditional-gradient-based augmented lagrangian framework. In: International Conference on Machine Learning, pp. 7272–7281. PMLR (2019)
Yurtsever, A., Fercoq, O., Locatello, F., Cevher, V.: A conditional gradient framework for composite convex minimization with applications to semidefinite programming. In: International Conference on Machine Learning, pp. 5727–5736. PMLR (2018)
Yurtsever, A., Tropp, J.A., Fercoq, O., Udell, M., Cevher, V.: Scalable semidefinite programming. SIAM J. Math. Data Sci. 3(1), 171–200 (2021)
Zaech, J.N., Liniger, A., Danelljan, M., Dai, D., Van Gool, L.: Adiabatic quantum computing for multi object tracking. arXiv preprint arXiv:2202.08837 (2022)
Zhou, X., Zhu, M., Daniilidis, K.: Multi-image matching via fast alternating minimization. In: International Conference on Computer Vision (ICCV), pp. 4032–4040 (2015)
Acknowledgment
A.Y. received support from the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yurtsever, A., Birdal, T., Golyanik, V. (2022). Q-FW: A Hybrid Classical-Quantum Frank-Wolfe for Quadratic Binary Optimization. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13683. Springer, Cham. https://doi.org/10.1007/978-3-031-20050-2_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-20050-2_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20049-6
Online ISBN: 978-3-031-20050-2
eBook Packages: Computer ScienceComputer Science (R0)