Exploring Hierarchical Graph Representation for Large-Scale Zero-Shot Image Classification | SpringerLink
Skip to main content

Exploring Hierarchical Graph Representation for Large-Scale Zero-Shot Image Classification

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

The main question we address in this paper is how to scale up visual recognition of unseen classes, also known as zero-shot learning, to tens of thousands of categories as in the ImageNet-21K benchmark. At this scale, especially with many fine-grained categories included in ImageNet-21K, it is critical to learn quality visual semantic representations that are discriminative enough to recognize unseen classes and distinguish them from seen ones. We propose a Hierarchical Graphical knowledge Representation framework for the confidence-based classification method, dubbed as HGR-Net. Our experimental results demonstrate that HGR-Net can grasp class inheritance relations by utilizing hierarchical conceptual knowledge. Our method significantly outperformed all existing techniques, boosting the performance by 7% compared to the runner-up approach on the ImageNet-21K benchmark. We show that HGR-Net is learning-efficient in few-shot scenarios. We also analyzed our method on smaller datasets like ImageNet-21K-P, 2-hops and 3-hops, demonstrating its generalization ability. Our benchmark and code are available at https://kaiyi.me/p/hgrnet.html.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, S., et al.: Free: Feature refinement for generalized zero-shot learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 122–131 (2021)

    Google Scholar 

  2. Cheng, R.: Data efficient language-supervised zero-shot recognition with optimal transport distillation (2021)

    Google Scholar 

  3. Cox, M.A., Cox, T.F.: Multidimensional scaling. In: Handbook of data visualization, pp. 315–347. Springer (2008). https://doi.org/10.1007/978-3-642-28753-4_101322

  4. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  5. Elhoseiny, M., Saleh, B., Elgammal, A.: Write a classifier: Zero-shot learning using purely textual descriptions. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2584–2591 (2013)

    Google Scholar 

  6. Elhoseiny, M., Zhu, Y., Zhang, H., Elgammal, A.: Link the head to the" beak": Zero shot learning from noisy text description at part precision. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6288–6297. IEEE (2017)

    Google Scholar 

  7. Frome, A., et al.: Devise: A deep visual-semantic embedding model (2013)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Jia, C., et al.: Scaling up visual and vision-language representation learning with noisy text supervision. arXiv preprint arXiv:2102.05918 (2021)

  10. Kampffmeyer, M., Chen, Y., Liang, X., Wang, H., Zhang, Y., Xing, E.P.: Rethinking knowledge graph propagation for zero-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11487–11496 (2019)

    Google Scholar 

  11. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  12. Liu, S., Chen, J., Pan, L., Ngo, C.W., Chua, T.S., Jiang, Y.G.: Hyperbolic visual embedding learning for zero-shot recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9273–9281 (2020)

    Google Scholar 

  13. Long, Y., Shao, L.: Describing unseen classes by exemplars: Zero-shot learning using grouped simile ensemble. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 907–915. IEEE (2017)

    Google Scholar 

  14. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International Conference on Learning Representations (2019)

    Google Scholar 

  15. Lu, Y.: Unsupervised learning on neural network outputs: with application in zero-shot learning. arXiv preprint arXiv:1506.00990 (2015)

  16. Micikevicius., et al.: Mixed precision training. arXiv preprint arXiv:1710.03740 (2017)

  17. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  18. Miller, G.A.: Wordnet: a lexical database for english. Commun. ACM 38(11), 39–41 (1995)

    Article  Google Scholar 

  19. Nayak, N.V., Bach, S.H.: Zero-shot learning with common sense knowledge graphs. arXiv preprint arXiv:2006.10713 (2020)

  20. Norouzi, M., et al.: Zero-shot learning by convex combination of semantic embeddings. arXiv preprint arXiv:1312.5650 (2013)

  21. Van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv e-prints pp. arXiv-1807 (2018)

    Google Scholar 

  22. Patterson, G., Hays, J.: Sun attribute database: Discovering, annotating, and recognizing scene attributes. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2751–2758. IEEE (2012)

    Google Scholar 

  23. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

    Google Scholar 

  24. Radford, A., et al.: Learning transferable visual models from natural language supervision. arXiv preprint arXiv:2103.00020 (2021)

  25. Ridnik, T., Ben-Baruch, E., Noy, A., Zelnik-Manor, L.: Imagenet-21k pretraining for the masses. arXiv preprint arXiv:2104.10972 (2021)

  26. Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare words with subword units. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (2016)

    Google Scholar 

  27. Skorokhodov, I., Elhoseiny, M.: Class normalization for zero-shot learning. In: International Conference on Learning Representations (2021). https://openreview.net/forum?id=7pgFL2Dkyyy

  28. Sun, Q., Liu, Y., Chen, Z., Chua, T.S., Schiele, B.: Meta-transfer learning through hard tasks. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  29. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  30. Veeling, B.S., Linmans, J., Winkens, J., Cohen, T., Welling, M.: Rotation equivariant cnns for digital pathology. CoRR (2018)

    Google Scholar 

  31. Wang, J., Jiang, B.: Zero-shot learning via contrastive learning on dual knowledge graphs. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 885–892 (2021)

    Google Scholar 

  32. Wang, X., Ye, Y., Gupta, A.: Zero-shot recognition via semantic embeddings and knowledge graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6857–6866 (2018)

    Google Scholar 

  33. Wang, Y., Yao, Q., Kwok, J.T., Ni, L.M.: Generalizing from a few examples: a survey on few-shot learning. ACM Comput. Surv. (CSUR) 53(3), 1–34 (2020)

    Article  Google Scholar 

  34. Welinder, P., et al.: Caltech-ucsd birds 200 (2010)

    Google Scholar 

  35. Xian, Y., Lampert, C.H., Schiele, B., Akata, Z.: Zero-shot learning-a comprehensive evaluation of the good, the bad and the ugly. In: PAMI (2018)

    Google Scholar 

  36. Xie, G.S., et al.: Attentive region embedding network for zero-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9384–9393 (2019)

    Google Scholar 

  37. Ye, H.J., Hu, H., Zhan, D.C.: Learning adaptive classifiers synthesis for generalized few-shot learning. Int. J. Comput. Vision 129(6), 1930–1953 (2021)

    Article  Google Scholar 

  38. Yu, Y., Ji, Z., Fu, Y., Guo, J., Pang, Y., Zhang, Z.M.: Stacked semantics-guided attention model for fine-grained zero-shot learning. In: NeurIPS (2018)

    Google Scholar 

  39. Zhang, C., Cai, Y., Lin, G., Shen, C.: Deepemd: Few-shot image classification with differentiable earth mover’s distance and structured classifiers. In 2020 IEEE CVF Conference on Computer Vision and Pattern Recognition, pp. 12200–12210 (2020)

    Google Scholar 

  40. Zhou, K., Yang, J., Loy, C.C., Liu, Z.: Learning to prompt for vision-language models. arXiv preprint arXiv:2109.01134 (2021)

Download references

Acknowledgments

Research reported in this paper was supported by King Abdullah University of Science and Technology (KAUST), BAS/1/1685-01-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Yi .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2529 KB)

Supplementary material 2 (pdf 3239 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yi, K., Shen, X., Gou, Y., Elhoseiny, M. (2022). Exploring Hierarchical Graph Representation for Large-Scale Zero-Shot Image Classification. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13680. Springer, Cham. https://doi.org/10.1007/978-3-031-20044-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20044-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20043-4

  • Online ISBN: 978-3-031-20044-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics