SLiDE: Self-supervised LiDAR De-snowing Through Reconstruction Difficulty | SpringerLink
Skip to main content

SLiDE: Self-supervised LiDAR De-snowing Through Reconstruction Difficulty

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13699))

Included in the following conference series:

  • 3390 Accesses

Abstract

LiDAR is widely used to capture accurate 3D outdoor scene structures. However, LiDAR produces many undesirable noise points in snowy weather, which hamper analyzing meaningful 3D scene structures. Semantic segmentation with snow labels would be a straightforward solution for removing them, but it requires laborious point-wise annotation. To address this problem, we propose a novel self-supervised learning framework for snow points removal in LiDAR point clouds. Our method exploits the structural characteristic of the noise points: low spatial correlation with their neighbors. Our method consists of two deep neural networks: Point Reconstruction Network (PR-Net) reconstructs each point from its neighbors; Reconstruction Difficulty Network (RD-Net) predicts point-wise difficulty of the reconstruction by PR-Net, which we call reconstruction difficulty. With simple post-processing, our method effectively detects snow points without any label. Our method achieves the state-of-the-art performance among label-free approaches and is comparable to the fully-supervised method. Moreover, we demonstrate that our method can be exploited as a pretext task to improve label-efficiency of supervised training of de-snowing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Batson, J., Royer, L.: Noise2self: blind denoising by self-supervision. In: International Conference on Machine Learning, pp. 524–533 (2019)

    Google Scholar 

  2. Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.A.: MixMatch: a holistic approach to semi-supervised learning. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  3. Bijelic, M., et al.: Seeing through fog without seeing fog: deep multimodal sensor fusion in unseen adverse weather. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 11682–11692 (2020)

    Google Scholar 

  4. Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 11621–11631 (2020)

    Google Scholar 

  5. Charron, N., Phillips, S., Waslander, S.L.: De-noising of LiDAR point clouds corrupted by snowfall. In: Conference on Computer and Robot Vision, pp. 254–261 (2018)

    Google Scholar 

  6. Chen, X., He, K.: Exploring simple siamese representation learning. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 15750–15758 (2021)

    Google Scholar 

  7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  8. Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning by context prediction. In: IEEE International Conference on Computer Vision, pp. 1422–1430 (2015)

    Google Scholar 

  9. Fan, L., Xiong, X., Wang, F., Wang, N., Zhang, Z.: RangeDet: in defense of range view for LiDAR-based 3D object detection. In: IEEE International Conference on Computer Vision, pp. 2918–2927 (2021)

    Google Scholar 

  10. Gao, B., Pan, Y., Li, C., Geng, S., Zhao, H.: Are we hungry for 3D LiDAR data for semantic segmentation? A survey of datasets and methods. IEEE Trans. Intell. Transp. Syst. (2021)

    Google Scholar 

  11. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354–3361 (2012)

    Google Scholar 

  12. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations. arXiv preprint arXiv:1803.07728 (2018)

  13. Grill, J.B., et al.: Bootstrap your own latent-a new approach to self-supervised learning. In: Advances in Neural Information Processing Systems, vol. 33, pp. 21271–21284 (2020)

    Google Scholar 

  14. Gruber, T., Bijelic, M., Heide, F., Ritter, W., Dietmayer, K.: Pixel-accurate depth evaluation in realistic driving scenarios. In: International Conference on 3D Vision, pp. 95–105. IEEE (2019)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  16. Heinzler, R., Piewak, F., Schindler, P., Stork, W.: CNN-based LiDAR point cloud de-noising in adverse weather. IEEE Robot. Autom. Lett. 5(2), 2514–2521 (2020)

    Article  Google Scholar 

  17. Hermosilla, P., Ritschel, T., Ropinski, T.: Total denoising: Unsupervised learning of 3D point cloud cleaning. In: IEEE International Conference on Computer Vision, pp. 52–60 (2019)

    Google Scholar 

  18. Iscen, A., Tolias, G., Avrithis, Y., Chum, O.: Label propagation for deep semi-supervised learning. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5070–5079 (2019)

    Google Scholar 

  19. Jarrett, K., Kavukcuoglu, K., Ranzato, M., LeCun, Y.: What is the best multi-stage architecture for object recognition? In: IEEE International Conference on Computer Vision, pp. 2146–2153. IEEE (2009)

    Google Scholar 

  20. Ke, Z., Wang, D., Yan, Q., Ren, J., Lau, R.W.: Dual student: breaking the limits of the teacher in semi-supervised learning. In: IEEE International Conference on Computer Vision, pp. 6728–6736 (2019)

    Google Scholar 

  21. Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: Advances in Neural Information Processing Systems, pp. 5580–5590 (2017)

    Google Scholar 

  22. Kilic, V., et al.: LiDAR light scattering augmentation (LISA): physics-based simulation of adverse weather conditions for 3D object detection. arXiv preprint arXiv:2107.07004 (2021)

  23. Kim, K., Ye, J.C.: Noise2score: tweedie’s approach to self-supervised image denoising without clean images. In: Advances in Neural Information Processing Systems, vol. 34 (2021)

    Google Scholar 

  24. Klodt, M., Vedaldi, A.: Supervising the new with the old: learning SFM from SFM. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 713–728. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_43

    Chapter  Google Scholar 

  25. Krull, A., Buchholz, T.O., Jug, F.: Noise2Void-learning denoising from single noisy images. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2129–2137 (2019)

    Google Scholar 

  26. Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. arXiv preprint arXiv:1610.02242 (2016)

  27. Landrieu, L., Simonovsky, M.: Large-scale point cloud semantic segmentation with superpoint graphs. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4558–4567 (2018)

    Google Scholar 

  28. Le, Q.V.: Building high-level features using large scale unsupervised learning. In: International Conference on Acoustics, Speech and Signal Processing, pp. 8595–8598. IEEE (2013)

    Google Scholar 

  29. Lee, D.H., et al.: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on Challenges in Representation Learning, ICML, vol. 3, p. 896 (2013)

    Google Scholar 

  30. Lee, S., Prakash, S.P.S., Cogswell, M., Ranjan, V., Crandall, D., Batra, D.: Stochastic multiple choice learning for training diverse deep ensembles. In: Advances in Neural Information Processing Systems, pp. 2119–2127 (2016)

    Google Scholar 

  31. Lehtinen, J., et al.: Noise2noise: learning image restoration without clean data. In: International Conference on Machine Learning, pp. 2965–2974 (2018)

    Google Scholar 

  32. Luo, H., et al.: Patch-based semantic labeling of road scene using colorized mobile LiDAR point clouds. IEEE Trans. Intell. Transp. Syst. 17(5), 1286–1297 (2015)

    Article  Google Scholar 

  33. Luo, H., et al.: Semantic labeling of mobile LiDAR point clouds via active learning and higher order MRF. IEEE Trans. Geosci. Remote Sens. 56(7), 3631–3644 (2018)

    Article  Google Scholar 

  34. Luo, S., Hu, W.: Differentiable manifold reconstruction for point cloud denoising. In: ACM International Conference on Multimedia, pp. 1330–1338 (2020)

    Google Scholar 

  35. Luo, S., Hu, W.: Score-based point cloud denoising. In: IEEE International Conference on Computer Vision, pp. 4583–4592 (2021)

    Google Scholar 

  36. Luo, Y., Zhu, J., Li, M., Ren, Y., Zhang, B.: Smooth neighbors on teacher graphs for semi-supervised learning. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 8896–8905 (2018)

    Google Scholar 

  37. Meyer, G.P., Laddha, A., Kee, E., Vallespi-Gonzalez, C., Wellington, C.K.: LaserNet: an efficient probabilistic 3D object detector for autonomous driving. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 12677–12686 (2019)

    Google Scholar 

  38. Milioto, A., Vizzo, I., Behley, J., Stachniss, C.: RangeNet++: fast and accurate LiDAR semantic segmentation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4213–4220. IEEE (2019)

    Google Scholar 

  39. Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving Jigsaw puzzles. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 69–84. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_5

    Chapter  Google Scholar 

  40. Park, J.I., Park, J., Kim, K.S.: Fast and accurate desnowing algorithm for LiDAR point clouds. IEEE Access 8, 160202–160212 (2020)

    Article  Google Scholar 

  41. Piewak, F., et al.: Boosting LiDAR-based semantic labeling by cross-modal training data generation. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11134, pp. 497–513. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11024-6_39

    Chapter  Google Scholar 

  42. Pitropov, M., et al.: Canadian adverse driving conditions dataset. Int. J. Robot. Res. (2020)

    Google Scholar 

  43. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  44. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  45. Quan, Y., Chen, M., Pang, T., Ji, H.: Self2self with dropout: learning self-supervised denoising from single image. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1890–1898 (2020)

    Google Scholar 

  46. Roriz, R., Campos, A., Pinto, S., Gomes, T.: DIOR: a hardware-assisted weather denoising solution for LiDAR point clouds. IEEE Sens. J. (2021)

    Google Scholar 

  47. Rusu, R.B., Cousins, S.: 3D is here: point cloud library (PCL). In: IEEE International Conference on Robotics and Automation, pp. 1–4 (2011)

    Google Scholar 

  48. Sajjadi, M., Javanmardi, M., Tasdizen, T.: Regularization with stochastic transformations and perturbations for deep semi-supervised learning. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  49. Shi, S., Wang, X., Li, H.: PointRCNN: 3D object proposal generation and detection from point cloud. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–779 (2019)

    Google Scholar 

  50. Shim, I., et al.: Vision system and depth processing for DRC-HUBO+. In: IEEE International Conference on Robotics and Automation, pp. 2456–2463 (2016)

    Google Scholar 

  51. Sohn, K., et al.: FixMatch: simplifying semi-supervised learning with consistency and confidence. In: Advances in Neural Information Processing Systems, vol. 33, pp. 596–608 (2020)

    Google Scholar 

  52. Sun, P., et al.: Scalability in perception for autonomous driving: Waymo open dataset. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2446–2454 (2020)

    Google Scholar 

  53. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  54. Van Engelen, J.E., Hoos, H.H.: A survey on semi-supervised learning. Mach. Learn. 109(2), 373–440 (2020)

    Article  MathSciNet  Google Scholar 

  55. Xie, Q., Luong, M.T., Hovy, E., Le, Q.V.: Self-training with noisy student improves ImageNet classification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 10687–10698 (2020)

    Google Scholar 

  56. Xie, S., Gu, J., Guo, D., Qi, C.R., Guibas, L., Litany, O.: PointContrast: unsupervised pre-training for 3D point cloud understanding. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 574–591. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_34

    Chapter  Google Scholar 

  57. Yang, G., Hu, P., Ramanan, D.: Inferring distributions over depth from a single image. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 6090–6096 (2019)

    Google Scholar 

  58. Zhou, H., Chen, K., Zhang, W., Fang, H., Zhou, W., Yu, N.: DUP-Net: denoiser and upsampler network for 3D adversarial point clouds defense. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1961–1970 (2019)

    Google Scholar 

  59. Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3D object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4490–4499 (2018)

    Google Scholar 

  60. Zoph, B., et al.: Rethinking pre-training and self-training. In: Advances in Neural Information Processing Systems, vol. 33, pp. 3833–3845 (2020)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the Agency for Defense Development (ADD) and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2022R1F1A1073505).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inwook Shim .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3112 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bae, G., Kim, B., Ahn, S., Min, J., Shim, I. (2022). SLiDE: Self-supervised LiDAR De-snowing Through Reconstruction Difficulty. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13699. Springer, Cham. https://doi.org/10.1007/978-3-031-19842-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19842-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19841-0

  • Online ISBN: 978-3-031-19842-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics