SeqTR: A Simple Yet Universal Network for Visual Grounding | SpringerLink
Skip to main content

SeqTR: A Simple Yet Universal Network for Visual Grounding

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13695))

Included in the following conference series:

Abstract

In this paper, we propose a simple yet universal network termed SeqTR for visual grounding tasks, e.g., phrase localization, referring expression comprehension (REC) and segmentation (RES). The canonical paradigms for visual grounding often require substantial expertise in designing network architectures and loss functions, making them hard to generalize across tasks. To simplify and unify the modeling, we cast visual grounding as a point prediction problem conditioned on image and text inputs, where either the bounding box or binary mask is represented as a sequence of discrete coordinate tokens. Under this paradigm, visual grounding tasks are unified in our SeqTR network without task-specific branches or heads, e.g., the convolutional mask decoder for RES, which greatly reduces the complexity of multi-task modeling. In addition, SeqTR also shares the same optimization objective for all tasks with a simple cross-entropy loss, further reducing the complexity of deploying hand-crafted loss functions. Experiments on five benchmark datasets demonstrate that the proposed SeqTR outperforms (or is on par with) the existing state-of-the-arts, proving that a simple yet universal approach for visual grounding is indeed feasible. Source code is available at https://github.com/sean-zhuh/SeqTR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Tested on GTX 1080 Ti GPU, batch size is 1.

References

  1. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  2. Chen, D.J., Jia, S., Lo, Y.C., Chen, H.T., Liu, T.L.: See-through-text grouping for referring image segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 7454–7463 (2019)

    Google Scholar 

  3. Chen, T., Saxena, S., Li, L., Fleet, D.J., Hinton, G.: Pix2seq: a language modeling framework for object detection. In: International Conference on Learning Representations (ICLR) (2022)

    Google Scholar 

  4. Chen, Y.C., et al.: UNITER: uNiversal image-TExt representation learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12375, pp. 104–120. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58577-8_7

    Chapter  Google Scholar 

  5. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)

  6. Deng, J., Yang, Z., Chen, T., Zhou, W., Li, H.: Transvg: end-to-end visual grounding with transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 1769–1779 (2021)

    Google Scholar 

  7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  8. Ding, H., Liu, C., Wang, S., Jiang, X.: Vision-language transformer and query generation for referring segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 16321–16330 (2021)

    Google Scholar 

  9. Escalante, H.J., et al.: The segmented and annotated iapr tc-12 benchmark. Comput. Vis. Image Understand. (CVIU) 114(4), 419–428 (2010)

    Article  Google Scholar 

  10. Feng, G., Hu, Z., Zhang, L., Lu, H.: Encoder fusion network with co-attention embedding for referring image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15506–15515 (2021)

    Google Scholar 

  11. Gan, Z., Chen, Y.C., Li, L., Zhu, C., Cheng, Y., Liu, J.: Large-scale adversarial training for vision-and-language representation learning. Adv. Neural Inf. Process. Syst. (NeurIPS) 33, 6616–6628 (2020)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  13. Hong, R., Liu, D., Mo, X., He, X., Zhang, H.: Learning to compose and reason with language tree structures for visual grounding. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) (2019)

    Google Scholar 

  14. Hu, R., Rohrbach, M., Andreas, J., Darrell, T., Saenko, K.: Modeling relationships in referential expressions with compositional modular networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1115–1124 (2017)

    Google Scholar 

  15. Hu, Z., Feng, G., Sun, J., Zhang, L., Lu, H.: Bi-directional relationship inferring network for referring image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4424–4433 (2020)

    Google Scholar 

  16. Huang, B., Lian, D., Luo, W., Gao, S.: Look before you leap: learning landmark features for one-stage visual grounding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16888–16897 (2021)

    Google Scholar 

  17. Huang, S., et al.: Referring image segmentation via cross-modal progressive comprehension. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10488–10497 (2020)

    Google Scholar 

  18. Hui, T., Liu, S., Huang, S., Li, G., Yu, S., Zhang, F., Han, J.: Linguistic structure guided context modeling for referring image segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12355, pp. 59–75. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58607-2_4

    Chapter  Google Scholar 

  19. Jing, Y., Kong, T., Wang, W., Wang, L., Li, L., Tan, T.: Locate then segment: a strong pipeline for referring image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9858–9867 (2021)

    Google Scholar 

  20. Kamath, A., Singh, M., LeCun, Y., Synnaeve, G., Misra, I., Carion, N.: Mdetr-modulated detection for end-to-end multi-modal understanding. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 1780–1790 (2021)

    Google Scholar 

  21. Kazemzadeh, S., Ordonez, V., Matten, M., Berg, T.: Referitgame: referring to objects in photographs of natural scenes. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 787–798 (2014)

    Google Scholar 

  22. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  23. Krishna, R., et al.: Visual genome: connecting language and vision using crowdsourced dense image annotations. Int. J. Comput. Vis. (IJCV) 123(1), 32–73 (2017)

    Article  MathSciNet  Google Scholar 

  24. Li, M., Sigal, L.: Referring transformer: a one-step approach to multi-task visual grounding. Adv. Neural Inf. Process. Syst. (NeurIPS) 34, 19652–19664 (2021)

    Google Scholar 

  25. Liao, Y., et al.: A real-time cross-modality correlation filtering method for referring expression comprehension. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10880–10889 (2020)

    Google Scholar 

  26. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988 (2017)

    Google Scholar 

  27. Liu, D., Zhang, H., Wu, F., Zha, Z.J.: Learning to assemble neural module tree networks for visual grounding. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4673–4682 (2019)

    Google Scholar 

  28. Liu, S., Hui, T., Huang, S., Wei, Y., Li, B., Li, G.: Cross-modal progressive comprehension for referring segmentation. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) (2021)

    Google Scholar 

  29. Liu, X., Wang, Z., Shao, J., Wang, X., Li, H.: Improving referring expression grounding with cross-modal attention-guided erasing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1950–1959 (2019)

    Google Scholar 

  30. Lu, J., Batra, D., Parikh, D., Lee, S.: Vilbert: pretraining task-agnostic visiolinguistic representations for vision-and-language tasks. Adv. Neural Inf. Process. Syst. (NeurIPS) 32 (2019)

    Google Scholar 

  31. Luo, G., Zhou, Y., Ji, R., Sun, X., Su, J., Lin, C.W., Tian, Q.: Cascade grouped attention network for referring expression segmentation. In: Proceedings of the 28th ACM International Conference on Multimedia (MM), pp. 1274–1282 (2020)

    Google Scholar 

  32. Luo, G., et al.: Multi-task collaborative network for joint referring expression comprehension and segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10034–10043 (2020)

    Google Scholar 

  33. Luo, G., et al.: Towards language-guided visual recognition via dynamic convolutions. arXiv preprint arXiv:2110.08797 (2021)

  34. Mao, J., Huang, J., Toshev, A., Camburu, O., Yuille, A.L., Murphy, K.: Generation and comprehension of unambiguous object descriptions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11–20 (2016)

    Google Scholar 

  35. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: Proceedings of the Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  36. Nagaraja, V.K., Morariu, V.I., Davis, L.S.: Modeling context between objects for referring expression understanding. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 792–807. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_48

    Chapter  Google Scholar 

  37. Plummer, B.A., et al.: Flickr30k entities: collecting region-to-phrase correspondences for richer image-to-sentence models. Int. J. Comput. Vis. (IJCV) 123(1), 74–93 (2017)

    Article  MathSciNet  Google Scholar 

  38. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.: Language models are unsupervised multitask learners. OpenAI blog 1(8), 9 (2019)

    Google Scholar 

  39. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  40. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. (NeurIPS) 28(2015)

    Google Scholar 

  41. Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: a metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 658–666 (2019)

    Google Scholar 

  42. Sadhu, A., Chen, K., Nevatia, R.: Zero-shot grounding of objects from natural language queries. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4694–4703 (2019)

    Google Scholar 

  43. Su, W., et al.: Vl-bert: pre-training of generic visual-linguistic representations. arXiv preprint arXiv:1908.08530 (2019)

  44. Sun, M., Xiao, J., Lim, E.G.: Iterative shrinking for referring expression grounding using deep reinforcement learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 14060–14069 (2021)

    Google Scholar 

  45. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. (NeurIPS) 30 (2017)

    Google Scholar 

  46. Wang, L., Li, Y., Huang, J., Lazebnik, S.: Learning two-branch neural networks for image-text matching tasks. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 41(2), 394–407 (2018)

    Article  Google Scholar 

  47. Yang, S., Li, G., Yu, Y.: Dynamic graph attention for referring expression comprehension. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4644–4653 (2019)

    Google Scholar 

  48. Yang, S., Xia, M., Li, G., Zhou, H.Y., Yu, Y.: Bottom-up shift and reasoning for referring image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11266–11275 (2021)

    Google Scholar 

  49. Yang, Z., Chen, T., Wang, L., Luo, J.: Improving one-stage visual grounding by recursive sub-query construction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 387–404. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_23

    Chapter  Google Scholar 

  50. Yang, Z., Gong, B., Wang, L., Huang, W., Yu, D., Luo, J.: A fast and accurate one-stage approach to visual grounding. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4683–4693 (2019)

    Google Scholar 

  51. Ye, L., Rochan, M., Liu, Z., Wang, Y.: Cross-modal self-attention network for referring image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10502–10511 (2019)

    Google Scholar 

  52. Young, P., Lai, A., Hodosh, M., Hockenmaier, J.: From image descriptions to visual denotations: new similarity metrics for semantic inference over event descriptions. Trans. Assoc. Comput. Linguist. (TACL) 2, 67–78 (2014)

    Article  Google Scholar 

  53. Yu, F., et al.: Ernie-vil: knowledge enhanced vision-language representations through scene graph. arXiv preprint arXiv:2006.16934 (2020)

  54. Yu, L., et al.: Mattnet: modular attention network for referring expression comprehension. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  55. Yu, L., Poirson, P., Yang, S., Berg, A.C., Berg, T.L.: Modeling context in referring expressions. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 69–85. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_5

    Chapter  Google Scholar 

  56. Yu, Z., Yu, J., Xiang, C., Zhao, Z., Tian, Q., Tao, D.: Rethinking diversified and discriminative proposal generation for visual grounding. arXiv preprint arXiv:1805.03508 (2018)

  57. Zhang, H., Niu, Y., Chang, S.F.: Grounding referring expressions in images by variational context. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4158–4166 (2018)

    Google Scholar 

  58. Zhou, Y., et al.: A real-time global inference network for one-stage referring expression comprehension. IEEE Trans. Neural Netw. Learn. Syst. (TNNLS) (2021)

    Google Scholar 

  59. Zhou, Y., et al.: Trar: routing the attention spans in transformer for visual question answering. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 2074–2084 (2021)

    Google Scholar 

  60. Zhuang, B., Wu, Q., Shen, C., Reid, I., Van Den Hengel, A.: Parallel attention: a unified framework for visual object discovery through dialogs and queries. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4252–4261 (2018)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Fund for Distinguished Young Scholars (No. 62025603), the National Natural Science Foundation of China (No. U21B2037, No. 62176222, No. 62176223, No. 62176226, No. 62072386, No. 62072387, No. 62072389, and No. 62002305), Guangdong Basic and Applied Basic Research Foundation (No. 2019B1515120049), and the Natural Science Foundation of Fujian Province of China (No. 2021J01002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liujuan Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, C. et al. (2022). SeqTR: A Simple Yet Universal Network for Visual Grounding. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13695. Springer, Cham. https://doi.org/10.1007/978-3-031-19833-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19833-5_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19832-8

  • Online ISBN: 978-3-031-19833-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics