Dynamic Temporal Filtering in Video Models | SpringerLink
Skip to main content

Dynamic Temporal Filtering in Video Models

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13695))

Included in the following conference series:

  • 2892 Accesses

Abstract

Video temporal dynamics is conventionally modeled with 3D spatial-temporal kernel or its factorized version comprised of 2D spatial kernel and 1D temporal kernel. The modeling power, nevertheless, is limited by the fixed window size and static weights of a kernel along the temporal dimension. The pre-determined kernel size severely limits the temporal receptive fields and the fixed weights treat each spatial location across frames equally, resulting in sub-optimal solution for long-range temporal modeling in natural scenes. In this paper, we present a new recipe of temporal feature learning, namely Dynamic Temporal Filter (DTF), that novelly performs spatial-aware temporal modeling in frequency domain with large temporal receptive field. Specifically, DTF dynamically learns a specialized frequency filter for every spatial location to model its long-range temporal dynamics. Meanwhile, the temporal feature of each spatial location is also transformed into frequency feature spectrum via 1D Fast Fourier Transform (FFT). The spectrum is modulated by the learnt frequency filter, and then transformed back to temporal domain with inverse FFT. In addition, to facilitate the learning of frequency filter in DTF, we perform frame-wise aggregation to enhance the primary temporal feature with its temporal neighbors by inter-frame correlation. It is feasible to plug DTF block into ConvNets and Transformer, yielding DTF-Net and DTF-Transformer. Extensive experiments conducted on three datasets demonstrate the superiority of our proposals. More remarkably, DTF-Transformer achieves an accuracy of 83.5% on Kinetics-400 dataset. Source code is available at https://github.com/FuchenUSTC/DTF.

F. Long and Z. Qiu—Contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lucic, M., Schmid, C.: ViViT: a video vision transformer. In: ICCV (2021)

    Google Scholar 

  2. Bertasius, G., Wang, H., Torresani, L.: Is space-time attention all you need for video understanding? In: ICML (2021)

    Google Scholar 

  3. Carreira, J., Zisserman, A.: Quo Vadis, action recognition? A new model and the kinetics dataset. In: CVPR (2017)

    Google Scholar 

  4. Chen, Y., Dai, X., Liu, M., Chen, D., Yuan, L., Liu, Z.: Dynamic convolution: attention over convolution kernels. In: CVPR (2020)

    Google Scholar 

  5. Chen, Y., Kalantidis, Y., Li, J., Yan, S., Feng, J.: Multi-fiber networks for video recognition. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 364–380. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_22

    Chapter  Google Scholar 

  6. Diba, A., Sharma, V., Gool, L.V.: Deep temporal linear encoding networks. In: CVPR (2017)

    Google Scholar 

  7. Dosovitskiy, A., et al.: An image is worth \(16\times 16\) words: transformers for image recognition at scale. In: ICLR (2021)

    Google Scholar 

  8. Fan, H., et al.: Multiscale vision transformers. arXiv preprint arXiv:2104.11227 (2021)

  9. Fan, Q., Chen, C.F., Kuehne, H., Pistoia, M., Cox, D.: More is less: learning efficient video representations by big-little network and depthwise temporal aggregation. In: NeurIPS (2019)

    Google Scholar 

  10. Feichtenhofer, C.: X3D: expanding architectures for efficient video recognition. In: CVPR (2020)

    Google Scholar 

  11. Feichtenhofer, C., Fan, H., Malik, J., He, K.: SlowFast networks for video recognition. In: ICCV (2019)

    Google Scholar 

  12. Feichtenhofer, C., Pinz, A., Zisserman, A.: Convolutional two-stream network fusion for video action recognition. In: CVPR (2016)

    Google Scholar 

  13. Goyal, R., et al.: The “something something” video database for learning and evaluating visual common sense. In: ICCV (2017)

    Google Scholar 

  14. Han, K., Xiao, A., Wu, E., Guo, J., Xu, C., Wang, Y.: Transformer in transformer. In: NeurIPS (2021)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  16. Ji, S., Xu, W., Yang, M., Yu, K.: 3D convolutional neural networks for human action recognition. IEEE Trans. PAMI 35, 221–231 (2013)

    Article  Google Scholar 

  17. Jiang, B., Wang, M., Gan, W., Wu, W., Yan, J.: STM: SpatioTemporal and motion encoding for action recognition. In: ICCV (2019)

    Google Scholar 

  18. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: CVPR (2014)

    Google Scholar 

  19. Klaser, A., Marszalek, M., Schmid, C.: A spatio-temporal descriptor based on 3D-gradients. In: BMVC (2008)

    Google Scholar 

  20. Kwon, H., Kim, M., Kwak, S., Cho, M.: MotionSqueeze: neural motion feature learning for video understanding. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 345–362. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_21

    Chapter  Google Scholar 

  21. Laptev, I.: On space-time interest points. Int. J. Comput. Vis. 64(2–3), 107–123 (2005)

    Article  Google Scholar 

  22. Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: CVPR (2008)

    Google Scholar 

  23. Li, X., Wang, Y., Zhou, Z., Qiao, Y.: SmallBigNet: integrating core and contextual views for video classification. In: CVPR (2020)

    Google Scholar 

  24. Li, Y., Ji, B., Shi, X., Zhang, J., Kang, B., Wang, L.: TEA: temporal excitation and aggregation for action recognition. In: CVPR (2020)

    Google Scholar 

  25. Li, Y., Yao, T., Pan, Y., Mei, T.: Contextual transformer networks for visual recognition. IEEE Trans. PAMI (2022)

    Google Scholar 

  26. Lin, J., Gan, C., Han, S.: TSM: temporal shift module for efficient video understanding. In: ICCV (2019)

    Google Scholar 

  27. Liu, X., Lee, J.Y., Jin, H.: Learning video representations from correspondence proposals. In: CVPR (2019)

    Google Scholar 

  28. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: ICCV (2021)

    Google Scholar 

  29. Liu, Z., et al.: Video Swin transformer. arXiv preprint arXiv:2106.13230 (2021)

  30. Liu, Z., et al.: TEINet: towards an efficient architecture for video recognition. In: AAAI (2020)

    Google Scholar 

  31. Long, F., Qiu, Z., Pan, Y., Yao, T., Luo, J., Mei, T.: Stand-alone inter-frame attention in video models. In: CVPR (2022)

    Google Scholar 

  32. Long, F., Yao, T., Qiu, Z., Tian, X., Luo, J., Mei, T.: Gaussian temporal awareness networks for action localization. In: CVPR (2019)

    Google Scholar 

  33. Long, F., Yao, T., Qiu, Z., Tian, X., Luo, J., Mei, T.: Learning to localize actions from moments. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 137–154. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_9

    Chapter  Google Scholar 

  34. Long, F., Yao, T., Qiu, Z., Tian, X., Luo, J., Mei, T.: Bi-calibration networks for weakly-supervised video representation learning. arXiv preprint arXiv:2206.10491 (2022)

  35. Long, F., Yao, T., Qiu, Z., Tian, X., Mei, T., Luo, J.: Coarse-to-fine localization of temporal action proposals. IEEE Trans. Multimedia 22(6), 1577–1590 (2020)

    Article  Google Scholar 

  36. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. In: ICLR (2017)

    Google Scholar 

  37. Luo, C., Yuille, A.: Grouped spatial-temporal aggregation for efficient action recognition. In: ICCV (2019)

    Google Scholar 

  38. Ng, J.Y.H., Hausknecht, M., Vijayanarasimhan, S., Vinyals, O., Monga, R., Toderici, G.: Beyond short snippets: deep networks for video classification. In: CVPR (2015)

    Google Scholar 

  39. Oppenheim, A.V., Willsky, A.S., Newab, S.H.: Signals and Systems. Prentice Hall, Englewood Cliffs (1998)

    Google Scholar 

  40. Qiu, Z., Yao, T., Mei, T.: Learning spatio-temporal representation with pseudo-3D residual networks. In: ICCV (2017)

    Google Scholar 

  41. Qiu, Z., Yao, T., Ngo, C.W., Mei, T.: Optimization planning for 3D ConvNets. In: ICML (2021)

    Google Scholar 

  42. Qiu, Z., Yao, T., Ngo, C.W., Tian, X., Mei, T.: Learning spatio-temporal representation with local and global diffusion. In: CVPR (2019)

    Google Scholar 

  43. Rao, Y., Zhao, W., Zhu, Z., Lu, J., Zhou, J.: Global filter networks for image classification. In: NeurIPS (2021)

    Google Scholar 

  44. Scovanner, P., Ali, S., Shah, M.: A 3-dimensional SIFT descriptor and its application to action recognition. In: ACM MM (2007)

    Google Scholar 

  45. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: ICCV (2017)

    Google Scholar 

  46. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: NIPS (2014)

    Google Scholar 

  47. Srivastava, N., Mansimov, E., Salakhutdinov, R.: Unsupervised learning of video representations using LSTMs. In: ICML (2015)

    Google Scholar 

  48. Sudhakaran, S., Escalera, S., Lanz, O.: Gate-shift networks for video action recognition. In: CVPR (2020)

    Google Scholar 

  49. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jegou, H.: Training data-efficient image transformers and distillation through attention. arXiv preprint arXiv:2012.12877 (2020)

  50. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: ICCV (2015)

    Google Scholar 

  51. Tran, D., Wang, H., Torresani, L., Feiszli, M.: Video classification with channel-separated convolutional networks. In: ICCV (2019)

    Google Scholar 

  52. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. In: CVPR (2018)

    Google Scholar 

  53. Vaswani, A., et al.: Attention is all you need. In: NIPS (2017)

    Google Scholar 

  54. Wang, H., Klaser, A., Schmid, C., Liu, C.L.: Action recognition by dense trajectories. In: CVPR (2011)

    Google Scholar 

  55. Wang, H., Tran, D., Torresani, L., Feiszli, M.: Video modeling with correlation networks. In: CVPR (2020)

    Google Scholar 

  56. Wang, L., Tong, Z., Ji, B., Wu, G.: TDN: temporal difference networks for efficient action recognition. In: CVPR (2021)

    Google Scholar 

  57. Wang, L., et al.: Temporal segment networks: towards good practices for deep action recognition. In: ECCV (2016)

    Google Scholar 

  58. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: CVPR (2018)

    Google Scholar 

  59. Wang, X., Gupta, A.: Videos as space-time region graphs. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 413–431. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_25

    Chapter  Google Scholar 

  60. Wang, Z., She, Q., Smolic, A.: ACTION-Net: multipath excitation for action recognition. In: CVPR (2021)

    Google Scholar 

  61. Xie, S., Sun, C., Huang, J., Tu, Z., Murphy, K.: Rethinking spatiotemporal feature learning: speed-accuracy trade-offs in video classification. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 318–335. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_19

    Chapter  Google Scholar 

  62. Yao, T., Zhang, Y., Qiu, Z., Pan, Y., Mei, T.: SeCo: exploring sequence supervision for unsupervised representation learning. In: AAAI (2021)

    Google Scholar 

  63. Yuan, L., et al.: Tokens-to-token ViT: training vision transformers from scratch on ImageNet. In: ICCV (2021)

    Google Scholar 

  64. Zhao, Y., Xiong, Y., Lin, D.: Trajectory convolution for action recognition. In: NeurIPS (2018)

    Google Scholar 

  65. Zhi, Y., Tong, Z., Wang, L., Wu, G.: MGSampler: an explainable sampling strategy for video action recognition. In: ICCV (2021)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the National Key R &D Program of China under Grant No. 2020AAA0108600.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingwei Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Long, F., Qiu, Z., Pan, Y., Yao, T., Ngo, CW., Mei, T. (2022). Dynamic Temporal Filtering in Video Models. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13695. Springer, Cham. https://doi.org/10.1007/978-3-031-19833-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19833-5_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19832-8

  • Online ISBN: 978-3-031-19833-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics