Abstract
Learning a generalized prior for natural image restoration is an important yet challenging task. Early methods mostly involved handcrafted priors including normalized sparsity, \(\ell _0\) gradients, dark channel priors, etc. Recently, deep neural networks have been used to learn various image priors but do not guarantee to generalize. In this paper, we propose a novel approach that embeds a task-agnostic prior into a transformer. Our approach, named Task-Agnostic Prior Embedding (TAPE), consists of two stages, namely, task-agnostic pre-training and task-specific fine-tuning, where the first stage embeds prior knowledge about natural images into the transformer and the second stage extracts the knowledge to assist downstream image restoration. Experiments on various types of degradation validate the effectiveness of TAPE. The image restoration performance in terms of PSNR is improved by as much as 1.45 dB and even outperforms task-specific algorithms. More importantly, TAPE shows the ability of disentangling generalized image priors from degraded images, which enjoys favorable transfer ability to unknown downstream tasks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We select a subset of TIP2018 and Snow100K with 10000 training image pairs and 200 test pairs; 10000 training image pairs and 500 test pairs, respectively.
References
Abdelhamed, A., Lin, S., Brown, M.S.: A high-quality denoising dataset for smartphone cameras. In: CVPR (2018)
Agustsson, E., Timofte, R.: Ntire 2017 challenge on single image super-resolution: Dataset and study. In: CVPRW (2017)
Babacan, S.D., Molina, R., Katsaggelos, A.K.: Variational Bayesian blind deconvolution using a total variation prior. TIP 18, 12–26 (2008)
Baek, K., Choi, Y., Uh, Y., Yoo, J., Shim, H.: Rethinking the truly unsupervised image-to-image translation. In: International Conference on Computer Vision (ICCV, 2021) (2021)
Bau, D., et al.: Semantic photo manipulation with a generative image prior. arXiv preprint arXiv:2005.07727 (2020)
Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. In: ICLR (2018)
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13
Chan, K.C., Wang, X., Xu, X., Gu, J., Loy, C.C.: Glean: generative latent bank for large-factor image super-resolution. arXiv preprint arXiv:2012.00739 (2020)
Chang, M., Li, Q., Feng, H., Xu, Z.: Spatial-adaptive network for single image denoising. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12375, pp. 171–187. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58577-8_11
Chen, H., et al.: Pre-trained image processing transformer. In: CVPR (2021)
Chen, L., Fang, F., Wang, T., Zhang, G.: Blind image deblurring with local maximum gradient prior. In: CVPR (2019)
Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: ICML (2020)
Chen, X., Wang, X., Zhou, J., Dong, C.: Activating more pixels in image super-resolution transformer. arXiv preprint arXiv:2205.04437 (2022)
Chen, Y.L., Hsu, C.T.: A generalized low-rank appearance model for spatio-temporally correlated rain streaks. In: ICCV (2013)
Dai, T., et al.: Wavelet-based network for high dynamic range imaging. arXiv preprint 2108.01434 (2021)
Dai, Z., Cai, B., Lin, Y., Chen, J.: Up-detr: unsupervised pre-training for object detection with transformers. In: CVPR (2021)
Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. TPAMI 38, 295–307 (2015)
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
El Helou, M., Süsstrunk, S.: BIGPrior: towards decoupling learned prior hallucination and data fidelity in image restoration. arXiv preprint arXiv:2011.01406 (2020)
Fu, X., Huang, J., Zeng, D., Huang, Y., Ding, X., Paisley, J.: Removing rain from single images via a deep detail network. In: CVPR (2017)
Golts, A., Freedman, D., Elad, M.: Unsupervised single image dehazing using dark channel prior loss. TIP 29, 2692–2701 (2020)
Gu, J., Shen, Y., Zhou, B.: Image processing using multi-code GAN prior. In: CVPR (2020)
Guo, S., Liang, Z., Zhang, L.: Joint denoising and demosaicking with green channel prior for real-world burst images. arXiv preprint arXiv:2101.09870 (2021)
Guo, S., Yan, Z., Zhang, K., Zuo, W., Zhang, L.: Toward convolutional blind denoising of real photographs. In: CVPR (2019)
He, B., Wang, C., Shi, B., Duan, L.Y.: Mop moire patterns using mopnet. In: ICCV (2019)
He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: CVPR (2020)
He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. TPAMI 33, 2341–2353 (2010)
Isobe, T., et al.: Video super-resolution with temporal group attention. In: CVPR (2020)
Jiang, K., Wang, Z., Yi, P., Chen, C., Lin, C.W.: PCNet: progressive coupled network for real-time image deraining. In: TIP (2021)
Kupyn, O., Martyniuk, T., Wu, J., Wang, Z.: Deblurgan-v2: Deblurring (orders-of-magnitude) faster and better. In: ICCV (2019)
Lee, H., Sohn, K., Min, D.: Unsupervised low-light image enhancement using bright channel prior. IEEE Signal Process. Lett. 27, 251–255 (2020)
Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Understanding and evaluating blind deconvolution algorithms. In: CVPR (2009)
Li, B., Liu, X., Hu, P., Wu, Z., Lv, J., Peng, X.: All-in-one image restoration for unknown corruption. In: CVPR (2022)
Li, L., Pan, J., Lai, W.S., Gao, C., Sang, N., Yang, M.H.: Blind image deblurring via deep discriminative priors. IJCV 127, 1025–1043 (2019)
Li, W., et al.: Sj-hd\(^2r\): Selective joint high dynamic range and denoising imaging for dynamic scenes. arXiv preprint 2206.09611 (2022)
Li, W., Lu, X., Lu, J., Zhang, X., Jia, J.: On efficient transformer and image pre-training for low-level vision. arXiv preprint arXiv:2112.10175
Li, X., Wu, J., Lin, Z., Liu, H., Zha, H.: Recurrent squeeze-and-excitation context aggregation net for single image deraining. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 262–277. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_16
Li, X., et al.: Learning disentangled feature representation for hybrid-distorted image restoration. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12374, pp. 313–329. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58526-6_19
Li, Y., Tan, R.T., Guo, X., Lu, J., Brown, M.S.: Rain streak removal using layer priors. In: CVPR (2016)
Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R.: Swinir: image restoration using swin transformer. In: ICCVW 2021
Liu, L., et al.: Wavelet-based dual-branch network for image Demoiréing. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 86–102. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_6
Liu, L., Yuan, S., Liu, J., Guo, X., Yan, Y., Tian, Q.: Siamtrans: zero-shot multi-frame image restoration with pre-trained siamese transformers. In: AAAI (2022)
Liu, Y.F., Jaw, D.W., Huang, S.C., Hwang, J.N.: Desnownet: context-aware deep network for snow removal. TIP 27, 3064–3073 (2018)
Nah, S., et al.: Ntire 2019 challenge on video deblurring and super-resolution: Dataset and study. In: CVPRW (2019)
Pan, J., Bai, H., Tang, J.: Cascaded deep video deblurring using temporal sharpness prior. In: CVPR, 2020
Pan, J., Sun, D., Pfister, H., Yang, M.H.: Blind image deblurring using dark channel prior. In: CVPR (2016)
Pan, X., Zhan, X., Dai, B., Lin, D., Loy, C.C., Luo, P.: Exploiting deep generative prior for versatile image restoration and manipulation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 262–277. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_16
Park, T., Efros, A.A., Zhang, R., Zhu, J.-Y.: Contrastive learning for unpaired image-to-image translation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 319–345. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_19
Qian, R., Tan, R.T., Yang, W., Su, J., Liu, J.: Attentive generative adversarial network for raindrop removal from a single image. In: CVPR (2018)
Ren, D., Shang, W., Zhu, P., Hu, Q., Meng, D., Zuo, W.: Single image deraining using bilateral recurrent network. TIP 29, 6852–6863 (2020)
Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: a better and simpler baseline. In: CVPR (2019)
Richardson, E., et al.: Encoding in style: a stylegan encoder for image-to-image translation. arXiv preprint arXiv:2008.00951 (2020)
Roth, S., Black, M.J.: Fields of experts: a framework for learning image priors. In: CVPR (2005)
Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)
Sun, Y., Yu, Y., Wang, W.: Moiré photo restoration using multiresolution convolutional neural networks. TIP 27, 4160–4172 (2018)
Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. In: CVPR (2018)
Vaswani, A., et al.: Attention is all you need. arXiv preprint arXiv:1706.03762 (2017)
Wang, J., Li, X., Yang, J.: Stacked conditional generative adversarial networks for jointly learning shadow detection and shadow removal. In: CVPR (2018)
Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: CVPR (2019)
Wang, X., Li, Y., Zhang, H., Shan, Y.: Towards real-world blind face restoration with generative facial prior. In: CVPR (2021)
Wang, Z., Cun, X., Bao, J., Liu, J.: Uformer: a general u-shaped transformer for image restoration. arXiv preprint arXiv:2106.03106
Yang, F., Yang, H., Fu, J., Lu, H., Guo, B.: Learning texture transformer network for image super-resolution. In: CVPR (2020)
Yang, S., Lei, Y., Xiong, S., Wang, W.: High resolution demoire network. In: ICIP (2020)
Yang, W., Tan, R.T., Feng, J., Liu, J., Guo, Z., Yan, S.: Deep joint rain detection and removal from a single image. In: CVPR (2017)
Yi, Q., Li, J., Dai, Q., Fang, F., Zhang, G., Zeng, T.: Structure-preserving deraining with residue channel prior guidance. ICCV (2021)
Yu, K., Dong, C., Lin, L., Loy, C.C.: Crafting a toolchain for image restoration by deep reinforcement learning. In: CVPR (2018)
Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., Yang, M.H.: Restormer: efficient transformer for high-resolution image restoration. In: CVPR (2022)
Zamir, S.W., et al.: Multi-stage progressive image restoration. In: CVPR (2021)
Zeng, Y., Fu, J., Chao, H.: Learning joint spatial-temporal transformations for video inpainting. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 528–543. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_31
Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser: residual learning of deep CNN for image denoising. TIP 26, 3142–3155 (2017)
Zhang, K., Zuo, W., Gu, S., Zhang, L.: Learning deep CNN denoiser prior for image restoration. In: CVPR (2017)
Zhang, K., Zuo, W., Zhang, L.: FFDNet: toward a fast and flexible solution for CNN based image denoising. TIP 27, 4608–4622 (2018)
Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image restoration. TPAMI 43, 2480–2495 (2020)
Zheng, B., et al.: Domainplus: cross transform domain learning towards efficient high dynamic range imaging. In: ACM MM (2022)
Zheng, B., Yuan, S., Slabaugh, G., Leonardis, A.: Image demoireing with learnable bandpass filters. In: CVPR, 2020
Zheng, B., et al.: Learning frequency domain priors for image demoireing. TPAMI 44, 7705–7717 (2021)
Zhu, L., Fu, C.W., Lischinski, D., Heng, P.A.: Joint bi-layer optimization for single-image rain streak removal. In: ICCV (2017)
Zhu, Q., Mai, J., Shao, L.: A fast single image haze removal algorithm using color attenuation prior. TIP 24, 3522–3533 (2015)
Zhu, S.C., Mumford, D.: Prior learning and Gibbs reaction-diffusion. TPAMI 19, 1236–1250 (1997)
Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable detr: deformable transformers for end-to-end object detection. In: ICLR (2021)
Acknowledgements
This work was supported by the National Natural Science Foundation of China under Contract 61836011 and 62021001. It was also supported by the GPU cluster built by MCC Lab of Information Science and Technology Institution, USTC.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Liu, L. et al. (2022). TAPE: Task-Agnostic Prior Embedding for Image Restoration. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13678. Springer, Cham. https://doi.org/10.1007/978-3-031-19797-0_26
Download citation
DOI: https://doi.org/10.1007/978-3-031-19797-0_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19796-3
Online ISBN: 978-3-031-19797-0
eBook Packages: Computer ScienceComputer Science (R0)