Abstract
Monocular 3D object detection is a challenging task in the self-driving and computer vision community. As a common practice, most previous works use manually annotated 3D box labels, where the annotating process is expensive. In this paper, we find that the precisely and carefully annotated labels may be unnecessary in monocular 3D detection, which is an interesting and counterintuitive finding. Using rough labels that are randomly disturbed, the detector can achieve very close accuracy compared to the one using the ground-truth labels. We delve into this underlying mechanism and then empirically find that: concerning the label accuracy, the 3D location part in the label is preferred compared to other parts of labels. Motivated by the conclusions above and considering the precise LiDAR 3D measurement, we propose a simple and effective framework, dubbed LiDAR point cloud guided monocular 3D object detection (LPCG). This framework is capable of either reducing the annotation costs or considerably boosting the detection accuracy without introducing extra annotation costs. Specifically, It generates pseudo labels from unlabeled LiDAR point clouds. Thanks to accurate LiDAR 3D measurements in 3D space, such pseudo labels can replace manually annotated labels in the training of monocular 3D detectors, since their 3D location information is precise. LPCG can be applied into any monocular 3D detector to fully use massive unlabeled data in a self-driving system. As a result, in KITTI benchmark, we take the first place on both monocular 3D and BEV (bird’s-eye-view) detection with a significant margin. In Waymo benchmark, our method using 10% labeled data achieves comparable accuracy to the baseline detector using 100% labeled data. The codes are released at https://github.com/SPengLiang/LPCG.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Brazil, G., Liu, X.: M3D-RPN: monocular 3D region proposal network for object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 9287–9296 (2019)
Chen, H., Huang, Y., Tian, W., Gao, Z., Xiong, L.: MonoRUn: monocular 3D object detection by reconstruction and uncertainty propagation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10379–10388 (2021)
Chen, X., Kundu, K., Zhu, Y., Ma, H., Fidler, S., Urtasun, R.: 3D object proposals using stereo imagery for accurate object class detection. IEEE Trans. Pattern Anal. Mach. Intell. 40(5), 1259–1272 (2017)
Chen, Y., Tai, L., Sun, K., Li, M.: MonoPair: Monocular 3D object detection using pairwise spatial relationships. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12093–12102 (2020)
Chu, X., et al.: Neighbor-vote: improving monocular 3d object detection through neighbor distance voting. arXiv preprint arXiv:2107.02493 (2021)
Ding, M., et al.: Learning depth-guided convolutions for monocular 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11672–11681 (2020)
Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Kdd, vol. 96, pp. 226–231 (1996)
Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354–3361. IEEE (2012)
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Kumar, A., Brazil, G., Liu, X.: GrooMeD-NMS: grouped mathematically differentiable NMS for monocular 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8973–8983 (2021)
Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: PointPillars: fast encoders for object detection from point clouds. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 12697–12705 (2019)
Li, P., Zhao, H., Liu, P., Cao, F.: RTM3D: real-time monocular 3D detection from object keypoints for autonomous driving. arXiv preprint arXiv:2001.03343 (2020)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, Y., Yixuan, Y., Liu, M.: Ground-aware monocular 3D object detection for autonomous driving. IEEE Robot. Autom. Lett. 6(2), 919–926 (2021)
Liu, Z., Zhou, D., Lu, F., Fang, J., Zhang, L.: Autoshape: real-time shape-aware monocular 3D object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15641–15650 (2021)
Lu, Y., et al.: Geometry uncertainty projection network for monocular 3D object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3111–3121 (2021)
Ma, X., Liu, S., Xia, Z., Zhang, H., Zeng, X., Ouyang, W.: Rethinking pseudo-LiDAR representation. arXiv preprint arXiv:2008.04582 (2020)
Ma, X., Wang, Z., Li, H., Zhang, P., Ouyang, W., Fan, X.: Accurate monocular 3D object detection via color-embedded 3D reconstruction for autonomous driving. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 6851–6860 (2019)
Ma, X., et al.: Delving into localization errors for monocular 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4721–4730 (2021)
Manhardt, F., Kehl, W., Gaidon, A.: ROI-10D: monocular lifting of 2D detection to 6D pose and metric shape. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2069–2078 (2019)
Park, D., Ambrus, R., Guizilini, V., Li, J., Gaidon, A.: Is pseudo-lidar needed for monocular 3D object detection? In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3142–3152 (2021)
Peng, L., Liu, F., Yan, S., He, X., Cai, D.: OCM3D: object-centric monocular 3D object detection. arXiv preprint arXiv:2104.06041 (2021)
Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum pointnets for 3D object detection from RGB-D data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 918–927 (2018)
Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)
Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. arXiv preprint arXiv:1706.02413 (2017)
Qin, Z., Wang, J., Lu, Y.: MonoGRNet: a geometric reasoning network for monocular 3D object localization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8851–8858 (2019)
Reading, C., Harakeh, A., Chae, J., Waslander, S.L.: Categorical depth distribution network for monocular 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8555–8564 (2021)
Shi, S., et al.: PV-RCNN: point-voxel feature set abstraction for 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10529–10538 (2020)
Shi, S., Wang, X., Li, H.: PointRCNN: 3D object proposal generation and detection from point cloud. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 770–779 (2019)
Shi, S., Wang, Z., Shi, J., Wang, X., Li, H.: From points to parts: 3D object detection from point cloud with part-aware and part-aggregation network. arXiv preprint arXiv:1907.03670 (2019)
Shi, W., Rajkumar, R.: Point-GNN: graph neural network for 3D object detection in a point cloud. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1711–1719 (2020)
Shi, X., Ye, Q., Chen, X., Chen, C., Chen, Z., Kim, T.K.: Geometry-based distance decomposition for monocular 3D object detection. arXiv preprint arXiv:2104.03775 (2021)
Simonelli, A., Bulo, S.R., Porzi, L., Kontschieder, P., Ricci, E.: Are we missing confidence in pseudo-LiDAR methods for monocular 3D object detection? In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3225–3233 (2021)
Simonelli, A., Bulo, S.R., Porzi, L., López-Antequera, M., Kontschieder, P.: Disentangling monocular 3D object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1991–1999 (2019)
Sun, P., et al.: Scalability in perception for autonomous driving: waymo open dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2446–2454 (2020)
Toussaint, G.T.: Solving geometric problems with the rotating calipers. In: Proceedings of IEEE Melecon, vol. 83, p. A10 (1983)
Wang, L., et al.: Depth-conditioned dynamic message propagation for monocular 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 454–463 (2021)
Wang, L., Zhang, L., Zhu, Y., Zhang, Z., He, T., Li, M., Xue, X.: Progressive coordinate transforms for monocular 3D object detection. In: Advances in Neural Information Processing Systems, vol. 34 (2021)
Wang, Y., Chao, W.L., Garg, D., Hariharan, B., Campbell, M., Weinberger, K.Q.: Pseudo-LiDAR from visual depth estimation: Bridging the gap in 3D object detection for autonomous driving. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8445–8453 (2019)
Weng, X., Kitani, K.: Monocular 3D object detection with pseudo-LiDAR point cloud. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (2019)
Yang, Z., Sun, Y., Liu, S., Jia, J.: 3DSSD: point-based 3D single stage object detector. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11040–11048 (2020)
Ye, M., Xu, S., Cao, T.: HVNet: hybrid voxel network for lidar based 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1631–1640 (2020)
Zakharov, S., Kehl, W., Bhargava, A., Gaidon, A.: Autolabeling 3D objects with differentiable rendering of SDF shape priors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12224–12233 (2020)
Zhang, Y., Lu, J., Zhou, J.: Objects are different: flexible monocular 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3289–3298 (2021)
Zheng, W., Tang, W., Jiang, L., Fu, C.W.: SE-SSD: self-ensembling single-stage object detector from point cloud. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14494–14503 (2021)
Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3D object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4490–4499 (2018)
Zhou, Y., He, Y., Zhu, H., Wang, C., Li, H., Jiang, Q.: Monocular 3D object detection: an extrinsic parameter free approach. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7556–7566 (2021)
Acknowledgments
This work was supported in part by The National Key Research and Development Program of China (Grant Nos: 2018AAA0101400), in part by The National Nature Science Foundation of China (Grant Nos: 62036009, U1909203, 61936006, 61973271), in part by Innovation Capability Support Program of Shaanxi (Program No. 2021TD-05).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Peng, L. et al. (2022). Lidar Point Cloud Guided Monocular 3D Object Detection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13661. Springer, Cham. https://doi.org/10.1007/978-3-031-19769-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-19769-7_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19768-0
Online ISBN: 978-3-031-19769-7
eBook Packages: Computer ScienceComputer Science (R0)