A Comparative Analysis of Reinforcement Learning Approaches to Cryptocurrency Price Prediction | SpringerLink
Skip to main content

A Comparative Analysis of Reinforcement Learning Approaches to Cryptocurrency Price Prediction

  • Conference paper
  • First Online:
HCI International 2022 – Late Breaking Posters (HCII 2022)

Abstract

Nowadays, Machine Learning (ML) is present in a high number of application fields. Among these, there is also automatic trading in the financial sector. The research question underlying our research activities is as follows: can ML techniques provide added value in the prediction task in domains with high volatility such as the cryptocurrency financial market? To answer this question, we analyzed and compared different Reinforcement Learning (RL) algorithms on data publicly available online. Specifically, we tested some value-based and policy-based RL algorithms trained for different time intervals, with diverse hyperparameter values and reward functions. The agent that allowed us to achieve the best results was the Deep Recurrent Q-Network trained using the Sharpe ratio as a reward function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 17159
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.cryptodatadownload.com/.

References

  1. Alessandretti, L., ElBahrawy, A., Aiello, L.M., Baronchelli, A.: Anticipating cryptocurrency prices using machine learning. Complexity 2018 (2018)

    Google Scholar 

  2. Biancalana, C., Gasparetti, F., Micarelli, A., Miola, A., Sansonetti, G.: Context-aware movie recommendation based on signal processing and machine learning. In: Proceedings of the 2nd Challenge on Context-Aware Movie Recommendation, pp. 5–10. CAMRa 2011, ACM, New York (2011)

    Google Scholar 

  3. Bologna, C., De Rosa, A.C., De Vivo, A., Gaeta, M., Sansonetti, G., Viserta, V.: Personality-based recommendation in e-commerce. In: CEUR Workshop Proceedings, vol. 997. CEUR-WS.org, Aachen, Germany (2013)

    Google Scholar 

  4. Buchanan, B.G.: Artificial Intelligence in Finance. The Alan Turing Institute (2019)

    Google Scholar 

  5. Caldarelli, S., Gurini, D.F., Micarelli, A., Sansonetti, G.: A signal-based approach to news recommendation. In: CEUR Workshop Proceedings, vol. 1618. CEUR-WS.org, Aachen, Germany (2016)

    Google Scholar 

  6. Cao, L.: Ai in finance: challenges, techniques, and opportunities. ACM Comput. Surv. 55(3), 1–14 (2022)

    Article  Google Scholar 

  7. Carloni, L., De Angelis, A., Sansonetti, G., Micarelli, A.: A machine learning approach to football match result prediction. In: Stephanidis, C., Antona, M., Ntoa, S. (eds.) HCII 2021. CCIS, vol. 1420, pp. 473–480. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78642-7_63

    Chapter  Google Scholar 

  8. D’Agostino, D., Gasparetti, F., Micarelli, A., Sansonetti, G.: A social context-aware recommender of itineraries between relevant points of interest. In: Stephanidis, C. (ed.) HCI 2016. CCIS, vol. 618, pp. 354–359. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40542-1_58

    Chapter  Google Scholar 

  9. D’Aniello, G., Gaeta, M., Orciuoli, F., Sansonetti, G., Sorgente, F.: Knowledge-based smart city service system. Electronics (Switzerland) 9(6), 1–22 (2020)

    Google Scholar 

  10. De Angelis, A., Gasparetti, F., Micarelli, A., Sansonetti, G.: A social cultural recommender based on linked open data. In: Adjunct Publication of the 25th UMAP Conference, pp. 329–332. ACM, New York, NY, USA (2017)

    Google Scholar 

  11. Ferrato, A., Limongelli, C., Mezzini, M., Sansonetti, G.: Using deep learning for collecting data about museum visitor behavior. Appl. Sci. 12(2), 533 (2022)

    Article  Google Scholar 

  12. Fogli, A., Sansonetti, G.: Exploiting semantics for context-aware itinerary recommendation. Pers. Ubiquit. Comput. 23(2), 215–231 (2019)

    Article  Google Scholar 

  13. Gasparetti, F., Sansonetti, G., Micarelli, A.: Community detection in social recommender systems: a survey. Appl. Intell. 51(6), 3975–3995 (2021)

    Article  Google Scholar 

  14. Gena, C., Grillo, P., Lieto, A., Mattutino, C., Vernero, F.: When personalization is not an option: an in-the-wild study on persuasive news recommendation. Information 10(10), 300 (2019)

    Article  Google Scholar 

  15. Hassan, H.A.M., Sansonetti, G., Gasparetti, F., Micarelli, A.: Semantic-based tag recommendation in scientific bookmarking systems. In: Proceedings of the 12th ACM Conference on Recommender Systems, pp. 465–469. ACM, New York, NY, USA (2018)

    Google Scholar 

  16. Hassan, H.A.M., Sansonetti, G., Gasparetti, F., Micarelli, A., Beel, J.: BERT, ELMo, USE and InferSent sentence encoders: the panacea for research-paper recommendation? In: Tkalcic, M., Pera, S. (eds.) Proceedings of ACM RecSys 2019 Late-Breaking Results, vol. 2431, pp. 6–10. CEUR-WS.org (2019)

    Google Scholar 

  17. Hilpisch, Y.: Artificial Intelligence in Finance. O’Reilly Media, Sebastopol (2020)

    Google Scholar 

  18. Jameson, A., et al.: How can we support users’ preferential choice? In: CHI 2011 Extended Abstracts. ACM, New York, NY, USA (2011)

    Google Scholar 

  19. Lucarelli, G., Borrotti, M.: A deep reinforcement learning approach for automated cryptocurrency trading. In: MacIntyre, J., Maglogiannis, I., Iliadis, L., Pimenidis, E. (eds.) AIAI 2019. IAICT, vol. 559, pp. 247–258. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19823-7_20

    Chapter  Google Scholar 

  20. McNally, S., Roche, J., Caton, S.: Predicting the price of bitcoin using machine learning. In: 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP), pp. 339–343 (2018)

    Google Scholar 

  21. Micarelli, A., Neri, A., Sansonetti, G.: A case-based approach to image recognition. In: Blanzieri, E., Portinale, L. (eds.) EWCBR 2000. LNCS, vol. 1898, pp. 443–454. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44527-7_38

    Chapter  Google Scholar 

  22. Onori, M., Micarelli, A., Sansonetti, G.: A comparative analysis of personality-based music recommender systems. In: CEUR Workshop Proceedings, vol. 1680, pp. 55–59. CEUR-WS.org, Aachen, Germany (2016)

    Google Scholar 

  23. Sansonetti, G.: Point of interest recommendation based on social and linked open data. Pers. Ubiquit. Comput. 23(2), 199–214 (2019)

    Article  Google Scholar 

  24. Sansonetti, G., Gasparetti, F., D’Aniello, G., Micarelli, A.: Unreliable users detection in social media: deep learning techniques for automatic detection. IEEE Access 8, 213154–213167 (2020)

    Article  Google Scholar 

  25. Sansonetti, G., Gasparetti, F., Micarelli, A.: Cross-domain recommendation for enhancing cultural heritage experience. In: Adjunct Publication of the 27th UMAP Conference, pp. 413–415. ACM, New York, NY, USA (2019)

    Google Scholar 

  26. Sardella, N., Biancalana, C., Micarelli, A., Sansonetti, G.: An approach to conversational recommendation of restaurants. In: Stephanidis, C. (ed.) HCII 2019. CCIS, vol. 1034, pp. 123–130. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23525-3_16

    Chapter  Google Scholar 

  27. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, 2nd edn. The MIT Press, Cambridge (2018)

    MATH  Google Scholar 

  28. Vaccaro, L., Sansonetti, G., Micarelli, A.: An empirical review of automated machine learning. Computers 10(1), 11 (2021)

    Article  Google Scholar 

  29. Wang, C., Wang, J., Shen, Y., Zhang, X.: Autonomous navigation of UAVs in large-scale complex environments: a deep reinforcement learning approach. IEEE Trans. Veh. Technol. 68(3), 2124–2136 (2019)

    Article  Google Scholar 

  30. Zhang, D., Zheng, Z., Jia, R., Li, M.: Visual tracking via hierarchical deep reinforcement learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 3315–3323 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Sansonetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bertillo, D., Morelli, C., Sansonetti, G., Micarelli, A. (2022). A Comparative Analysis of Reinforcement Learning Approaches to Cryptocurrency Price Prediction. In: Stephanidis, C., Antona, M., Ntoa, S., Salvendy, G. (eds) HCI International 2022 – Late Breaking Posters. HCII 2022. Communications in Computer and Information Science, vol 1655. Springer, Cham. https://doi.org/10.1007/978-3-031-19682-9_75

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19682-9_75

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19681-2

  • Online ISBN: 978-3-031-19682-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics