Abstract
Nowadays, Machine Learning (ML) is present in a high number of application fields. Among these, there is also automatic trading in the financial sector. The research question underlying our research activities is as follows: can ML techniques provide added value in the prediction task in domains with high volatility such as the cryptocurrency financial market? To answer this question, we analyzed and compared different Reinforcement Learning (RL) algorithms on data publicly available online. Specifically, we tested some value-based and policy-based RL algorithms trained for different time intervals, with diverse hyperparameter values and reward functions. The agent that allowed us to achieve the best results was the Deep Recurrent Q-Network trained using the Sharpe ratio as a reward function.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alessandretti, L., ElBahrawy, A., Aiello, L.M., Baronchelli, A.: Anticipating cryptocurrency prices using machine learning. Complexity 2018 (2018)
Biancalana, C., Gasparetti, F., Micarelli, A., Miola, A., Sansonetti, G.: Context-aware movie recommendation based on signal processing and machine learning. In: Proceedings of the 2nd Challenge on Context-Aware Movie Recommendation, pp. 5–10. CAMRa 2011, ACM, New York (2011)
Bologna, C., De Rosa, A.C., De Vivo, A., Gaeta, M., Sansonetti, G., Viserta, V.: Personality-based recommendation in e-commerce. In: CEUR Workshop Proceedings, vol. 997. CEUR-WS.org, Aachen, Germany (2013)
Buchanan, B.G.: Artificial Intelligence in Finance. The Alan Turing Institute (2019)
Caldarelli, S., Gurini, D.F., Micarelli, A., Sansonetti, G.: A signal-based approach to news recommendation. In: CEUR Workshop Proceedings, vol. 1618. CEUR-WS.org, Aachen, Germany (2016)
Cao, L.: Ai in finance: challenges, techniques, and opportunities. ACM Comput. Surv. 55(3), 1–14 (2022)
Carloni, L., De Angelis, A., Sansonetti, G., Micarelli, A.: A machine learning approach to football match result prediction. In: Stephanidis, C., Antona, M., Ntoa, S. (eds.) HCII 2021. CCIS, vol. 1420, pp. 473–480. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78642-7_63
D’Agostino, D., Gasparetti, F., Micarelli, A., Sansonetti, G.: A social context-aware recommender of itineraries between relevant points of interest. In: Stephanidis, C. (ed.) HCI 2016. CCIS, vol. 618, pp. 354–359. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40542-1_58
D’Aniello, G., Gaeta, M., Orciuoli, F., Sansonetti, G., Sorgente, F.: Knowledge-based smart city service system. Electronics (Switzerland) 9(6), 1–22 (2020)
De Angelis, A., Gasparetti, F., Micarelli, A., Sansonetti, G.: A social cultural recommender based on linked open data. In: Adjunct Publication of the 25th UMAP Conference, pp. 329–332. ACM, New York, NY, USA (2017)
Ferrato, A., Limongelli, C., Mezzini, M., Sansonetti, G.: Using deep learning for collecting data about museum visitor behavior. Appl. Sci. 12(2), 533 (2022)
Fogli, A., Sansonetti, G.: Exploiting semantics for context-aware itinerary recommendation. Pers. Ubiquit. Comput. 23(2), 215–231 (2019)
Gasparetti, F., Sansonetti, G., Micarelli, A.: Community detection in social recommender systems: a survey. Appl. Intell. 51(6), 3975–3995 (2021)
Gena, C., Grillo, P., Lieto, A., Mattutino, C., Vernero, F.: When personalization is not an option: an in-the-wild study on persuasive news recommendation. Information 10(10), 300 (2019)
Hassan, H.A.M., Sansonetti, G., Gasparetti, F., Micarelli, A.: Semantic-based tag recommendation in scientific bookmarking systems. In: Proceedings of the 12th ACM Conference on Recommender Systems, pp. 465–469. ACM, New York, NY, USA (2018)
Hassan, H.A.M., Sansonetti, G., Gasparetti, F., Micarelli, A., Beel, J.: BERT, ELMo, USE and InferSent sentence encoders: the panacea for research-paper recommendation? In: Tkalcic, M., Pera, S. (eds.) Proceedings of ACM RecSys 2019 Late-Breaking Results, vol. 2431, pp. 6–10. CEUR-WS.org (2019)
Hilpisch, Y.: Artificial Intelligence in Finance. O’Reilly Media, Sebastopol (2020)
Jameson, A., et al.: How can we support users’ preferential choice? In: CHI 2011 Extended Abstracts. ACM, New York, NY, USA (2011)
Lucarelli, G., Borrotti, M.: A deep reinforcement learning approach for automated cryptocurrency trading. In: MacIntyre, J., Maglogiannis, I., Iliadis, L., Pimenidis, E. (eds.) AIAI 2019. IAICT, vol. 559, pp. 247–258. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19823-7_20
McNally, S., Roche, J., Caton, S.: Predicting the price of bitcoin using machine learning. In: 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP), pp. 339–343 (2018)
Micarelli, A., Neri, A., Sansonetti, G.: A case-based approach to image recognition. In: Blanzieri, E., Portinale, L. (eds.) EWCBR 2000. LNCS, vol. 1898, pp. 443–454. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44527-7_38
Onori, M., Micarelli, A., Sansonetti, G.: A comparative analysis of personality-based music recommender systems. In: CEUR Workshop Proceedings, vol. 1680, pp. 55–59. CEUR-WS.org, Aachen, Germany (2016)
Sansonetti, G.: Point of interest recommendation based on social and linked open data. Pers. Ubiquit. Comput. 23(2), 199–214 (2019)
Sansonetti, G., Gasparetti, F., D’Aniello, G., Micarelli, A.: Unreliable users detection in social media: deep learning techniques for automatic detection. IEEE Access 8, 213154–213167 (2020)
Sansonetti, G., Gasparetti, F., Micarelli, A.: Cross-domain recommendation for enhancing cultural heritage experience. In: Adjunct Publication of the 27th UMAP Conference, pp. 413–415. ACM, New York, NY, USA (2019)
Sardella, N., Biancalana, C., Micarelli, A., Sansonetti, G.: An approach to conversational recommendation of restaurants. In: Stephanidis, C. (ed.) HCII 2019. CCIS, vol. 1034, pp. 123–130. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23525-3_16
Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, 2nd edn. The MIT Press, Cambridge (2018)
Vaccaro, L., Sansonetti, G., Micarelli, A.: An empirical review of automated machine learning. Computers 10(1), 11 (2021)
Wang, C., Wang, J., Shen, Y., Zhang, X.: Autonomous navigation of UAVs in large-scale complex environments: a deep reinforcement learning approach. IEEE Trans. Veh. Technol. 68(3), 2124–2136 (2019)
Zhang, D., Zheng, Z., Jia, R., Li, M.: Visual tracking via hierarchical deep reinforcement learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 3315–3323 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bertillo, D., Morelli, C., Sansonetti, G., Micarelli, A. (2022). A Comparative Analysis of Reinforcement Learning Approaches to Cryptocurrency Price Prediction. In: Stephanidis, C., Antona, M., Ntoa, S., Salvendy, G. (eds) HCI International 2022 – Late Breaking Posters. HCII 2022. Communications in Computer and Information Science, vol 1655. Springer, Cham. https://doi.org/10.1007/978-3-031-19682-9_75
Download citation
DOI: https://doi.org/10.1007/978-3-031-19682-9_75
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19681-2
Online ISBN: 978-3-031-19682-9
eBook Packages: Computer ScienceComputer Science (R0)