Improving Neural Machine Translation for Low Resource Languages Using Mixed Training: The Case of Ethiopian Languages | SpringerLink
Skip to main content

Improving Neural Machine Translation for Low Resource Languages Using Mixed Training: The Case of Ethiopian Languages

  • Conference paper
  • First Online:
Advances in Computational Intelligence (MICAI 2022)

Abstract

Neural Machine Translation (NMT) has shown improvement for high-resource languages, but there is still a problem with low-resource languages as NMT performs well on huge parallel data available for high-resource languages. In spite of many proposals to solve the problem of low-resource languages, it continues to be a difficult challenge. The issue becomes even more complicated when few resources cover only one domain. In our attempt to combat this issue, we propose a new approach to improve NMT for low-resource languages. The proposed approach using the transformer model shows 5.3, 5.0, and 3.7 BLEU score improvement for Gamo-English, Gofa-English, and Dawuro-English language pairs, respectively, where Gamo, Gofa, and Dawuro are related low-resource Ethiopian languages. We discuss our contributions and envisage future steps in this challenging research area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8579
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10724
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Julia, H., Manning, C.D.: Advances in natural language processing. Science 349(6245), 261–266 (2015)

    Article  MathSciNet  Google Scholar 

  2. Forcada, M.L.: Making sense of neural machine translation. Transl. Spaces 6(2), 291–309 (2017)

    Article  Google Scholar 

  3. Mohamed, S.A., Elsayed, A.A., Hassan, Y.F., Abdou, M.A.: Neural machine translation: past, present, and future. Neural Comput. Appl. 33(23), 15919–15931 (2021). https://doi.org/10.1007/s00521-021-06268-0

    Article  Google Scholar 

  4. Benyamin, A., Dorr, B.J.: Augmenting neural machine translation through round-trip training approach. Open Comput. Sci. 9(1), 268–278 (2019)

    Article  Google Scholar 

  5. Alexandre, B., Kim, Z.M., Nikoulina, V., Park, E.L., Gallé, M.: A multilingual neural machine translation model for biomedical data. arXiv preprint arXiv:2008.02878 (2020)

  6. Markus, F., Firat, O.: Complete multilingual neural machine translation. arXiv preprint arXiv:2010.10239 (2020)

  7. Khaled, S., Rafea, A., Moneim, A.A., Baraka, H.: Machine translation of English noun phrases into Arabic. Int. J. Comput. Process. Oriental Lang. 17(02), 121–134 (2004)

    Article  Google Scholar 

  8. Pratik, J., Santy, S., Budhiraja, A., Bali, K., Choudhury, M.: The state and fate of linguistic diversity and inclusion in the NLP world. arXiv preprint arXiv:2004.09095 (2020)

  9. Hasibuan, Z.: A comparative study between human translation and machine translation as an interdisciplinary research. J. Eng. Teach. Learn. Issue. 3(2), 115–130 (2020)

    Article  Google Scholar 

  10. Dubey, P.: Study and development of machine translation system from Hindi language to Dogri language an important tool to bridge the digital divide (2008)

    Google Scholar 

  11. Okpor, M.D.: Machine translation approaches: issues and challenges. Int. J. Comput. Sci. Issue. (IJCSI) 11(5), 159 (2014)

    Google Scholar 

  12. Lopez, A.: Statistical machine translation. ACM Comput. Surv. (CSUR) 40(3), 1–49 (2008)

    Article  Google Scholar 

  13. Philipp, K.: Statistical Machine Translation. Cambridge University Press (2009)

    Google Scholar 

  14. Sergei, N., Somers, H.L., Wilks, Y.A.: A Framework of a Mechanical Translation between Japanese and English by Analogy Principle, pp. 351–354 (2003)

    Google Scholar 

  15. Philipp, K.: Neural machine translation. arXiv preprint arXiv:1709.07809 (2017)

  16. Stahlberg, F.: Neural machine translation: a review. J. Artif. Intell. Res. 69, 343–418 (2020)

    Article  MathSciNet  Google Scholar 

  17. Wu, Y., et al.: Google’s neural machine translation system: bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144 (2016)

  18. Robert, Ö., Tiedemann, J.: Neural machine translation for low-resource languages. arXiv preprint arXiv:1708.05729 (2017)

  19. Barret, Z., Yuret, D., May, J., Knight, K.: Transfer learning for low-resource neural machine translation. arXiv preprint arXiv:1604.02201 (2016)

  20. Tao, F., Li, M., Chen, L.: Low-resource neural machine translation with transfer learning. In: LREC 2018 Workshop, p. 30 (2018)

    Google Scholar 

  21. Amel, S., Melouah, a., Faghihi, u., Sahib, k.: Improving neural machine translation for low resource Algerian dialect by transductive transfer learning strategy. Arab. J. Sci. Eng. 47, 10411–10418 (2022)

    Google Scholar 

  22. Hirut, W.: Language planning challenged by identity contestation in a multilingual setting: the case of gamo. Oslo Stud. Lang. 8(1) (2016)

    Google Scholar 

  23. Azeb, A.: The Omotic Language Family. Cambridge University Press (2017)

    Google Scholar 

  24. Atnafu Lambebo, T., Woldeyohannis, M.M., Yigezu, M.G.: A parallel corpora for bi-directional neural machine translation for low resourced Ethiopian languages. In: 2021 International Conference on Information and Communication Technology for Development for Africa (ICT4DA), pp. 71–76. IEEE (2021)

    Google Scholar 

  25. Ashish, V., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  26. Gage, P.: A new algorithm for data compression. C Users J. 12(2), 23–38 (1994)

    Google Scholar 

  27. Guillaume, K., Kim, Y., Deng, Y., Senellart, J., Rush, A.M.: OpenNMT: open-source toolkit for neural machine translation. arXiv preprint arXiv:1701.02810 (2017)

  28. Michael, C., Bragança, L., Paranaiba Vilela Neto, O., Nacif, J.A., Ferreira R.: Google colab cad4u: hands-on cloud laboratories for digital design. In: 2021 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5. IEEE (2021)

    Google Scholar 

  29. Yigezu, M.G., Woldeyohannis M.M., Tonja, A.L.:Multilingual neural machine translation for low resourced languages: Ometo-English. In: 2021 International Conference on Information and Communication Technology for Development for Africa (ICT4DA), pp. 89–94 (2021). https://doi.org/10.1109/ICT4DA53266.2021.9671270

Download references

Acknowledgments

The work was done with partial support from the Mexican Government through the grant A1S-47854 of CONACYT, Mexico, grants 20220852, 20220859, and 20221627 of the Secretaría de Investigación y Posgrado of the Instituto Politécnico Nacional, Mexico. The authors thank the CONACYT for the computing resources brought to them through the Plataforma de Aprendizaje Profundo para Tecnologías del Lenguaje of the Laboratorio de Supercómputo of the INAOE, Mexico and acknowledge the support of Microsoft through the Microsoft Latin America PhD Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atnafu Lambebo Tonja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tonja, A.L., Kolesnikova, O., Arif, M., Gelbukh, A., Sidorov, G. (2022). Improving Neural Machine Translation for Low Resource Languages Using Mixed Training: The Case of Ethiopian Languages. In: Pichardo Lagunas, O., Martínez-Miranda, J., Martínez Seis, B. (eds) Advances in Computational Intelligence. MICAI 2022. Lecture Notes in Computer Science(), vol 13613. Springer, Cham. https://doi.org/10.1007/978-3-031-19496-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19496-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19495-5

  • Online ISBN: 978-3-031-19496-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics