Efficient Dependency Analysis for Rule-Based Ontologies | SpringerLink
Skip to main content

Efficient Dependency Analysis for Rule-Based Ontologies

  • Conference paper
  • First Online:
The Semantic Web – ISWC 2022 (ISWC 2022)

Abstract

Several types of dependencies have been proposed for the static analysis of existential rule ontologies, promising insights about computational properties and possible practical uses of a given set of rules, e.g., in ontology-based query answering. Unfortunately, these dependencies are rarely implemented, so their potential is hardly realised in practice. We focus on two kinds of rule dependencies – positive reliances and restraints – and design and implement optimised algorithms for their efficient computation. Experiments on real-world ontologies of up to more than 100,000 rules show the scalability of our approach, which lets us realise several previously proposed applications as practical case studies. In particular, we can analyse to what extent rule-based bottom-up approaches of reasoning can be guaranteed to yield redundancy-free “lean” knowledge graphs (so-called cores) on practical ontologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We use the term only informally, since (tuple-generating) dependencies are also a common name for rules in databases.

References

  1. Baget, J.F., Leclère, M., Mugnier, M.L., Salvat, E.: On rules with existential variables: walking the decidability line. Artif. Intell. 175(9–10), 1620–1654 (2011)

    Article  MathSciNet  Google Scholar 

  2. Baget, J.-F., Leclère, M., Mugnier, M.-L., Rocher, S., Sipieter, C.: Graal: a toolkit for query answering with existential rules. In: Bassiliades, N., Gottlob, G., Sadri, F., Paschke, A., Roman, D. (eds.) RuleML 2015. LNCS, vol. 9202, pp. 328–344. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21542-6_21

    Chapter  Google Scholar 

  3. Bellomarini, L., Sallinger, E., Gottlob, G.: The vadalog system: datalog-based reasoning for knowledge graphs. Proc. VLDB Endow. 11(9), 975–987 (2018)

    Article  Google Scholar 

  4. Bourgaux, C., Carral, D., Krötzsch, M., Rudolph, S., Thomazo, M.: Capturing homomorphism-closed decidable queries with existential rules. In: Bienvenu, M., Lakemeyer, G., Erdem, E. (eds.) Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning (KR 2021), pp. 141–150. IJCAI (2021)

    Google Scholar 

  5. Calì, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for tractable query answering over ontologies. J. Web Semant. 14, 57–83 (2012)

    Article  Google Scholar 

  6. Calì, A., Gottlob, G., Pieris, A.: Towards more expressive ontology languages: the query answering problem. J. Artif. Intell. 193, 87–128 (2012)

    Article  MathSciNet  Google Scholar 

  7. Carral, D., Dragoste, I., González, L., Jacobs, C., Krötzsch, M., Urbani, J.: VLog: a rule engine for knowledge graphs. In: Ghidini, C., et al. (eds.) ISWC 2019. LNCS, vol. 11779, pp. 19–35. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30796-7_2

    Chapter  Google Scholar 

  8. Carral, D., Dragoste, I., Krötzsch, M.: The combined approach to query answering in Horn-\(\cal{ALCHOIQ} \). In: Thielscher, M., Toni, F., Wolter, F. (eds.) Proceedings of 16th International Conference on Principles of Knowledge Representation and Reasoning (KR 2018), pp. 339–348. AAAI Press (2018)

    Google Scholar 

  9. Carral, D., Dragoste, I., Krötzsch, M., Lewe, C.: Chasing sets: how to use existential rules for expressive reasoning. In: Kraus, S. (ed.) Proceedings of 28th International Joint Conference on Artificial Intelligence (IJCAI 2019), pp. 1624–1631. ijcai.org (2019)

    Google Scholar 

  10. Cuenca Grau, B., et al.: Acyclicity notions for existential rules and their application to query answering in ontologies. J. Artif. Intell. Res. 47, 741–808 (2013)

    Article  MathSciNet  Google Scholar 

  11. Deutsch, A., Nash, A., Remmel, J.B.: The chase revisited. In: Lenzerini, M., Lembo, D. (eds.) Proceedings of 27th Symposium on Principles of Database Systems (PODS 2008), pp. 149–158. ACM (2008)

    Google Scholar 

  12. Ellmauthaler, S., Krötzsch, M., Mennicke, S.: Answering queries with negation over existential rules. In: Proceedings of AAAI Conference on Artificial Intelligence, vol. 36, no. 5, pp. 5626–5633. AAAI Press (2022)

    Google Scholar 

  13. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and query answering. Theoret. Comput. Sci. 336(1), 89–124 (2005)

    Article  MathSciNet  Google Scholar 

  14. González, L., Ivliev, A., Krötzsch, M., Mennicke, S.: Efficient dependency analysis for rule-based ontologies. CoRR abs/2207.09669 (2022). https://arxiv.org/abs/2207.09669

  15. Grahne, G., Onet, A.: Anatomy of the chase. Fundam. Inform. 157(3), 221–270 (2018)

    Article  MathSciNet  Google Scholar 

  16. Hogan, A.: Canonical forms for isomorphic and equivalent RDF graphs: algorithms for leaning and labelling blank nodes. ACM Trans. Web 11(4), 1–62 (2017). https://doi.org/10.1145/3068333

    Article  MathSciNet  Google Scholar 

  17. Krötzsch, M.: Computing cores for existential rules with the standard chase and ASP. In: Calvanese, D., Erdem, E., Thielscher, M. (eds.) Proceedings of 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020), pp. 603–613. IJCAI (2020)

    Google Scholar 

  18. Krötzsch, M., Rudolph, S., Hitzler, P.: Complexities of Horn description logics. ACM Trans. Comput. Logic 14(1), 2:1–2:36 (2013)

    Google Scholar 

  19. Magka, D., Krötzsch, M., Horrocks, I.: Computing stable models for nonmonotonic existential rules. In: Rossi, F. (ed.) Proceedings of 23rd International Joint Conference on Artificial Intelligence (IJCAI 2013), pp. 1031–1038. AAAI Press/IJCAI (2013)

    Google Scholar 

  20. Mallea, A., Arenas, M., Hogan, A., Polleres, A.: On blank nodes. In: Aroyo, L., et al. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 421–437. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25073-6_27

    Chapter  Google Scholar 

  21. Meier, M., Schmidt, M., Lausen, G.: On chase termination beyond stratification. PVLDB 2(1), 970–981 (2009)

    Google Scholar 

  22. Nenov, Y., Piro, R., Motik, B., Horrocks, I., Wu, Z., Banerjee, J.: RDFox: a highly-scalable RDF store. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9367, pp. 3–20. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25010-6_1

    Chapter  Google Scholar 

  23. Urbani, J., Jacobs, C., Krötzsch, M.: Column-oriented datalog materialization for large knowledge graphs. In: Schuurmans, D., Wellman, M.P. (eds.) Proceedings of 30th AAAI Conference on Artificial Intelligence (AAAI 2016), pp. 258–264. AAAI Press (2016)

    Google Scholar 

Download references

Acknowledgments

This work is partly supported by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) in project 389792660 (TRR 248, Center for Perspicuous Systems), by the Bundesministerium für Bildung und Forschung (BMBF, Federal Ministry of Education and Research) under European ITEA project 01IS21084 (InnoSale, Innovating Sales and Planning of Complex Industrial Products Exploiting Artificial Intelligence) and Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), by BMBF and DAAD (German Academic Exchange Service) in project 57616814 (SECAI, School of Embedded and Composite AI), and by the Center for Advancing Electronics Dresden (cfaed).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Ivliev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

González, L., Ivliev, A., Krötzsch, M., Mennicke, S. (2022). Efficient Dependency Analysis for Rule-Based Ontologies. In: Sattler, U., et al. The Semantic Web – ISWC 2022. ISWC 2022. Lecture Notes in Computer Science, vol 13489. Springer, Cham. https://doi.org/10.1007/978-3-031-19433-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19433-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19432-0

  • Online ISBN: 978-3-031-19433-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics