Abstract
Video anomaly detection has made great achievements in security work. A basic assumption is that the abnormal is the outlier of the normal. However, most existing methods only focus on minimizing the reconstruction or prediction error of normal samples while ignoring to maximize that of abnormal samples. The completeness of the training data and the similarity between certain normal and abnormal samples can cause the network overfitting to normal samples and generalizing to abnormal samples. To address the two problems, we propose Mutual Learning Inspired Prediction Network. Specifically, it consists of two student generators and one discriminator to predict the future frame, together with our proposed Boundary Perception-Based Mimicry Loss and Self-Supervised Weighted Loss. The proposed Boundary Perception-Based Mimicry Loss guides the generators to learn the predicted frame from each, which can help to increase the diversity of training data and prevent interference at the same time. The proposed Self-Supervised Weighted Loss constraints the confusion samples in training data with a small weight, which can clarify the modeling goal of the network and enlarge the distance between normal and abnormal samples. Experiments on four mainstream datasets demonstrate the effectiveness of our proposed method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abati, D., Porrello, A., Calderara, S., Cucchiara, R.: Latent space autoregression for novelty detection. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
Chalapathy, R., Menon, A.K., Chawla, S.: Robust, deep and inductive anomaly detection. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10534, pp. 36–51. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71249-9_3
Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41(3) (2009). https://doi.org/10.1145/1541880.1541882
Dhole, H., Sutaone, M., Vyas, V.: Anomaly detection using convolutional spatiotemporal autoencoder. In: 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT) (2019)
Fan, S., Meng, F.: Video prediction and anomaly detection algorithm based on dual discriminator. In: 2020 5th International Conference on Computational Intelligence and Applications (ICCIA), pp. 123–127 (2020). https://doi.org/10.1109/ICCIA49625.2020.00031
Gong, D., et al.: Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV) (2020)
Hasan, M., Choi, J., Neumann, J., Roy-Chowdhury, A.K., Davis, L.S.: Learning temporal regularity in video sequences. CoRR abs/1604.04574 (2016). http://arxiv.org/abs/1604.04574
Ionescu, R.T., Smeureanu, S., Popescu, M., Alexe, B.: Detecting abnormal events in video using narrowed normality clusters. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1951–1960 (2019). https://doi.org/10.1109/WACV.2019.00212
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)
Kim, J., Grauman, K.: Observe locally, infer globally: a space-time MRF for detecting abnormal activities with incremental updates. In: 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2009), Miami, Florida, USA, 20–25 June 2009 (2009)
Kingma, D., Ba, J.: Adam: a method for stochastic optimization. Computer Science (2014)
Kwon, Y.H., Park, M.G.: Predicting future frames using retrospective cycle GAN. In: IEEE Computer Vision and Pattern Recognition (CVPR) (2019)
Liang, Z., Wang, H., Ding, X., Mu, T.: Industrial time series determinative anomaly detection based on constraint hypergraph. Knowl.-Based Syst. 233, 107548 (2021). https://doi.org/10.1016/j.knosys.2021.107548. https://www.sciencedirect.com/science/article/pii/S0950705121008108
Liu, W., Luo, W., Lian, D., Gao, S.: Future frame prediction for anomaly detection - a new baseline. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6536–6545 (2018). https://doi.org/10.1109/CVPR.2018.00684
Lu, C., Shi, J., Jia, J.: Abnormal event detection at 150 FPS in MATLAB. In: IEEE International Conference on Computer Vision (2014)
Luo, W., et al.: Video anomaly detection with sparse coding inspired deep neural networks. IEEE Trans. Pattern Anal. Mach. Intell. 43(03), 1070–1084 (2021). https://doi.org/10.1109/TPAMI.2019.2944377
Luo, W., Liu, W., Gao, S.: Remembering history with convolutional lstm for anomaly detection. In: 2017 IEEE International Conference on Multimedia and Expo (ICME), pp. 439–444 (2017). https://doi.org/10.1109/ICME.2017.8019325
Luo, W., Liu, W., Gao, S.: A revisit of sparse coding based anomaly detection in stacked RNN framework. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 341–349 (2017). https://doi.org/10.1109/ICCV.2017.45
Lv, F., Liang, T., Zhao, J., Zhuo, Z., Wu, J., Yang, G.: Latent Gaussian process for anomaly detection in categorical data. Knowl.-Based Syst. 220, 106896 (2021). https://doi.org/10.1016/j.knosys.2021.106896. https://www.sciencedirect.com/science/article/pii/S0950705121001593
Mahadevan, V., Li, W.X., Bhalodia, V., Vasconcelos, N.: Anomaly detection in crowded scenes. In: Computer Vision and Pattern Recognition (2010)
Mathieu, M., Couprie, C., Lecun, Y.: Deep multi-scale video prediction beyond mean square error. In: ICLR (2016)
Nazaré, T.S., de Mello, R.F., Ponti, M.A.: Are pre-trained CNNs good feature extractors for anomaly detection in surveillance videos? CoRR abs/1811.08495 (2018). http://arxiv.org/abs/1811.08495
Qiao, M., Wang, T., Li, J., Li, C., Lin, Z., Snoussi, H.: Abnormal event detection based on deep autoencoder fusing optical flow. In: 2017 36th Chinese Control Conference (CCC), pp. 11098–11103 (2017). https://doi.org/10.23919/ChiCC.2017.8029129
Sabokrou, M., Fayyaz, M., Fathy, M., Moayed, Z., Klette, R.: Deep-anomaly: fully convolutional neural network for fast anomaly detection in crowded scenes. Comput. Vis. Image Underst. 172, 88–97 (2018). https://doi.org/10.1016/j.cviu.2018.02.006. https://www.sciencedirect.com/science/article/pii/S1077314218300249
Villegas, R., Yang, J., Hong, S., Lin, X., Lee, H.: Decomposing motion and content for natural video sequence prediction. CoRR abs/1706.08033 (2017). http://arxiv.org/abs/1706.08033
Wang, X., Du, Y., Lin, S., Cui, P., Shen, Y., Yang, Y.: adVAE: a self-adversarial variational autoencoder with gaussian anomaly prior knowledge for anomaly detection. Knowl.-Based Syst. 190, 105187 (2020). https://doi.org/10.1016/j.knosys.2019.105187. https://www.sciencedirect.com/science/article/pii/S0950705119305283
Xu, D., Ricci, E., Yan, Y., Song, J., Sebe, N.: Learning deep representations of appearance and motion for anomalous event detection. In: Proceedings of the British Machine Vision Conference (BMVC), pp. 8.1–8.12. BMVA Press, September 2015. https://doi.org/10.5244/C.29.8
Zhao, Y., Deng, B., Shen, C., Liu, Y., Lu, H., Hua, X.S.: Spatio-temporal autoencoder for video anomaly detection. In: Proceedings of the 25th ACM International Conference on Multimedia, MM 201717, pp. 1933–1941. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3123266.3123451
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, Y., Fang, X., Li, F., Yu, L. (2022). Mutual Learning Inspired Prediction Network for Video Anomaly Detection. In: Yu, S., et al. Pattern Recognition and Computer Vision. PRCV 2022. Lecture Notes in Computer Science, vol 13536. Springer, Cham. https://doi.org/10.1007/978-3-031-18913-5_45
Download citation
DOI: https://doi.org/10.1007/978-3-031-18913-5_45
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-18912-8
Online ISBN: 978-3-031-18913-5
eBook Packages: Computer ScienceComputer Science (R0)