Abstract
Unsupervised re-identification (ReID) is a task that does not use labels for classification and recognition. It is fundamentally challenging due to the need to retrieve target objects across different perspectives, and coupled with the absence of ID labels for supervision. However, the most severe aspect is that the appearance features of vehicles can be shifted under different viewpoints, which may cause an imbalance in inter-class and intra-class variation. In this work, we propose a fully unsupervised re-identification method applied to the person and vehicle domain. In particular, different from previous methods of cluster pseudo-labelling, we compress the feature dimensions used to generate the labels and improve the quality of the pseudo-label. Then, in the update memory feature module, we introduce the idea of partitioning to construct algorithms for dynamically finding inter-class and intra-class boundaries to improve the robustness of the model. To demonstrate the effectiveness of the proposed method, we conduct experiments on one vehicle dataset (VeRi-776) and one person datasets (MSMT17). Experimental results demonstrate that our method is effective in enhancing the performance of the ReID task, and the proposed method achieves the state-of-the-art performance. The code has been made available at https://github.com/ljwwwiop/unsupervised_reid.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chen, H., Lagadec, B., Bremond, F.: Ice: inter-instance contrastive encoding for unsupervised person re-identification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14960–14969 (2021)
Chen, H., Wang, Y., Lagadec, B., Dantcheva, A., Bremond, F.: Joint generative and contrastive learning for unsupervised person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2004–2013 (2021)
Chu, R., Sun, Y., Li, Y., Liu, Z., Wei, Y.: Vehicle re-identification with viewpoint-aware metric learning. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV) (2019)
Dai, Z., Wang, G., Zhu, S., Yuan, W., Tan, P.: Cluster contrast for unsupervised person re-identification. arxiv 2021. arXiv preprint arXiv:2103.11568 (2021)
Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, vol. 96, pp. 226–231 (1996)
Fan, H., Zheng, L., Yan, C., Yang, Y.: Unsupervised person re-identification: clustering and fine-tuning. ACM Trans. Multimedia Comput. Commun. Appl. (TOMM), 14(4), 1–18 (2018)
Ge, Y., Chen, D., Li, H.: Mutual mean-teaching: pseudo label refinery for unsupervised domain adaptation on person re-identification. arXiv preprint arXiv:2001.01526 (2020)
Ge, Y., Zhu, F., Chen, D., Zhao, R., et al.: Self-paced contrastive learning with hybrid memory for domain adaptive object re-id. Adv. Neural. Inf. Process. Syst. 33, 11309–11321 (2020)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (2016)
Huang, Y., et al.: Dual domain multi-task model for vehicle re-identification. IEEE Trans. Intell. Transp. Syst. 23, 2991–2999 (2020)
Jia, D., Wei, D., Socher, R., Li, L.J., Kai, L., Li, F.F.: Imagenet: a large-scale hierarchical image database. In: Proceedings of IEEE Computer Vision Pattern Recognition, pp. 248–255 (2009)
Khorramshahi, P., Kumar, A., Peri, N., Rambhatla, S.S., Chen, J.-C., Chellappa, R.: A dual-path model with adaptive attention for vehicle re-identification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2019
Kingma, D., Ba, J.: Adam: a method for stochastic optimization. Comput. Sci. (2014)
Y. Lin, X. Dong, L. Zheng, Y. Yan, and Y. Yang. A bottom-up clustering approach to unsupervised person re-identification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8738–8745 (2019)
Lin, Y., Xie, L., Wu, Y., Yan, C., Tian, Q.: Unsupervised person re-identification via softened similarity learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3390–3399 (2020)
Liu, X., Liu, W., Mei, T., Ma, H.: A deep learning-based approach to progressive vehicle re-identification for urban surveillance. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 869–884. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_53
Liu, X., Liu, W., Zheng, J., Yan, C., Mei, T.: Beyond the parts: learning multi-view cross-part correlation for vehicle re-identification. In: MM 2020: The 28th ACM International Conference on Multimedia (2020)
MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, vol. 1, pp. 281–297 (1967)
Song, L., et al.: Unsupervised domain adaptive re-identification: theory and practice. Pattern Recogn. 102, 107173 (2020)
Wang, D., Zhang, S.: Unsupervised person re-identification via multi-label classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10981–10990 (2020)
Wang, H., Peng, J., Jiang, G., Xu, F., Fu, X.: Discriminative feature and dictionary learning with part-aware model for vehicle re-identification. Neurocomputing 438, 55–62 (2021)
Wang, X., Han, X., Huang, W., Dong, D., Scott, M.R.: Multi-similarity loss with general pair weighting for deep metric learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)
Wang, Z., et al.: Orientation invariant feature embedding and spatial temporal regularization for vehicle re-identification. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), October 2017
Wang, Z., et al.: CycAs: self-supervised cycle association for learning re-identifiable descriptions. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 72–88. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_5
Wei, L., Zhang, S., Gao, W., Tian, Q.: Person transfer GAN to bridge domain gap for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 79–88 (2018)
Yu, J., Oh, H.: Unsupervised vehicle re-identification via self-supervised metric learning using feature dictionary. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3806–3813. IEEE (2021)
Zheng, A., Sun, X., Li, C., Tang, J.: Aware progressive clustering for unsupervised vehicle re-identification. IEEE Trans. Intell. Transp. Syst. 23, 11422–11435 (2021)
Zheng, K., Liu, W., He, L., Mei, T., Luo, J., Zha, Z.-J.: Group-aware label transfer for domain adaptive person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5310–5319 (2021)
Zheng, L., Shen, L., Lu, T., Wang, S., Qi, T.: Scalable person re-identification: a benchmark. In: 2015 IEEE International Conference on Computer Vision (ICCV) (2015)
Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y.: Random erasing data augmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence (2020)
Acknowledgements
This work is supported by Industry-University Cooperation Project of Fujian Science and Technology Department (No. 2021H6035), and the Science and Technology Planning Project of Fujian Province (No. 2021J011191, 2020H0023, 2020Y9064), and the Joint Funds of 5th Round of Health and Education Research Program of Fu-jian Province (No. 2019-WJ-41).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Lian, J., Wang, DH., Du, X., Wu, Y., Zhu, S. (2022). Exploiting Robust Memory Features for Unsupervised Reidentification. In: Yu, S., et al. Pattern Recognition and Computer Vision. PRCV 2022. Lecture Notes in Computer Science, vol 13535. Springer, Cham. https://doi.org/10.1007/978-3-031-18910-4_52
Download citation
DOI: https://doi.org/10.1007/978-3-031-18910-4_52
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-18909-8
Online ISBN: 978-3-031-18910-4
eBook Packages: Computer ScienceComputer Science (R0)