Forecasting the Number of Bugs and Vulnerabilities in Software Components Using Neural Network Models | SpringerLink
Skip to main content

Abstract

The frequency of cyber attacks has been rising rapidly lately, which is a major concern. Because each attack exploits one or more vulnerabilities in the software components that make up the targeted system, the number of vulnerabilities is an indication of the level of security and trust that these components provide. In addition to vulnerabilities, the security of a component can also be affected by software bugs, as they can turn into weaknesses, which if exploited can become vulnerabilities. This paper presents a comparison of several types of neural networks for forecasting the number of software bugs and vulnerabilities that will be discovered for a software component in certain timeframe, in terms of accuracy, trainability and stability to configuration parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 19447
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 24309
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cosma, O., Macelaru, M., Pop, P.C., Sabo, C., Zelina, I.: A comparative study of the most important methods for forecasting the ICT systems vulnerabilities. In: Gude Prego, J.J., de la Puerta, J.G., García Bringas, P., Quintián, H., Corchado, E. (eds.) CISIS - ICEUTE 2021. AISC, vol. 1400, pp. 224–233. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-87872-6_22

    Chapter  Google Scholar 

  2. Gencer, K., Basciftci, F.: Time series forecast modeling of vulnerabilities in the Android operating system using ARIMA and deep learning methods. Sustain. Comput. Inform. Syst. 30, 100515 (2021)

    Google Scholar 

  3. Kaushik, R., Jain, S., Jain, S., Dash, T.: Performance evaluation of deep neural networks for forecasting time-series with multiple structural breaks and high volatility. CAAI Trans. Intell. Technol. 6(3), 265–280 (2021)

    Article  Google Scholar 

  4. Pokhrel, N.R., Rodrigo, H., Tsokos, C.P.: Cybersecurity: time series predictive modeling of vulnerabilities of desktop operating system using linear and non-linear approach. J. Inf. Secur. 8, 362–382 (2017)

    Google Scholar 

  5. Roumani, Y., Nwankpa, J.K., Roumani, Y.F.: Time series modeling of vulnerabilities. Comput. Secur. 51, 32–40 (2015)

    Article  Google Scholar 

  6. Yasasin, E., Prester, J., Wagner, G., Schryen, G.: Forecasting IT security vulnerabilities - an empirical analysis. Comput. Secur. 88, 101610 (2020)

    Google Scholar 

  7. Rahimi, S., Zargham, M.: Vulnerability scrying method for software vulnerability discovery prediction without a vulnerability database. IEEE Trans. Reliab. 62(2), 395–407 (2013)

    Article  Google Scholar 

  8. Williams, M.A., Barranco, R.C., Naim, S.M., Dey, S., Hossain, M.S, Akbar, M.: A vulnerability analysis and prediction framework. Comput. Secur. 92, 101751 (2020)

    Google Scholar 

  9. Keras. https://keras.io/

  10. Canonical: UBUNTU releases. http://releases.ubuntu.com/

  11. National Institute of Standards and Technology: National Vulnerability Database. https://nvd.nist.gov/

  12. Robust-rosin: ROBUST ROS Bug Study. https://github.com/robust-rosin/robust

  13. ROS-Industrial Quality-Assured Robot Software Components. https://www.rosin-project.eu/

  14. YAML.org: Yet Another Markup Language (YAML) 1.0

    Google Scholar 

Download references

Acknowledgements

This work was supported by the project BIECO (www.bieco.org) that received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 952702, and by the UEFISCDI PN-III-P3-3.6-H2020-2020-0039, Contract 15/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ovidiu Cosma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cosma, O., Pop, P., Sabo, C., Cosma, L. (2023). Forecasting the Number of Bugs and Vulnerabilities in Software Components Using Neural Network Models. In: García Bringas, P., et al. International Joint Conference 15th International Conference on Computational Intelligence in Security for Information Systems (CISIS 2022) 13th International Conference on EUropean Transnational Education (ICEUTE 2022). CISIS ICEUTE 2022 2022. Lecture Notes in Networks and Systems, vol 532. Springer, Cham. https://doi.org/10.1007/978-3-031-18409-3_16

Download citation

Publish with us

Policies and ethics