Deep Learning Approach for the Prediction of the Concentration of Chlorophyll ɑ in Seawater. A Case Study in El Mar Menor (Spain) | SpringerLink
Skip to main content

Deep Learning Approach for the Prediction of the Concentration of Chlorophyll ɑ in Seawater. A Case Study in El Mar Menor (Spain)

  • Conference paper
  • First Online:
17th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2022) (SOCO 2022)

Abstract

The goal of this research is to develop accurate and reliable forecasting models for chlorophyll ɑ concentrations in seawater at multiple depth levels in El Mar Menor (Spain). Chlorophyll ɑ can be used as a eutrophication indicator, which is especially essential in a rich yet vulnerable ecosystem like the study area. Bayesian regularized artificial neural networks and Long Short-term Memory Neural Networks (LSTMs) employing a rolling window approach were used as forecasting algorithms with a one-week prediction horizon. Two input strategies were tested: using data from the own time series or including exogenous variables among the inputs. In this second case, mutual information and the Minimum-Redundancy-Maximum-Relevance approach were utilized to select the most relevant variables. The models obtained reasonable results for the univariate input scheme with \(\overline{\sigma }\) values over 0.75 in levels between 0.5 and 2 m. The inclusion of exogenous variables increased these values to above 0.85 for the same depth levels. The models and methodologies presented in this paper can constitute a very useful tool to help predict eutrophication episodes and act as decision-making tools that allow the governmental and environmental agencies to prevent the degradation of El Mar Menor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Perez-Ruzafa, A., Marcos, C., Gilabert, J.: The ecology of the Mar Menor coastal lagoon: A fast changing ecosystem under human pressure. In: Coastal Lagoons: Ecosystem Processes and Modeling for Sustainable Use and Development (2005)

    Google Scholar 

  2. Ruiz, J.M., et al.: Informe de evolución y estado actual del Mar Menor en relación al proceso de eutrofización y sus causas. Informe de asesoramiento técnico del Instituto Español de Oceanografía (IEO) (2022)

    Google Scholar 

  3. U. P. Cartagena Servidor de Datos Cientificos del Mar Menor. https://marmenor.upct.es/docs/. Accessed 6 May 2022

  4. Jimeno-Sáez, P., Senent-Aparicio, J., Cecilia, J., Pérez-Sánchez, J.: Using machine-learning algorithms for eutrophication modeling: case study of Mar Menor Lagoon (Spain). Int. J. Environ. Res. Public Health 17, 1189 (2020)

    Article  Google Scholar 

  5. Yu, Z., Yang, K., Luo, Y., Shang, C.: Spatial-temporal process simulation and prediction of chlorophyll-a concentration in Dianchi Lake based on wavelet analysis and long-short term memory network. J. Hydrol. 582, 124488 (2020)

    Article  Google Scholar 

  6. Cho, H., Park, H.: Merged-LSTM and multistep prediction of daily chlorophyll-a concentration for algal bloom forecast. IOP Conf. Ser. Earth Environ. Sci. 351, 012020 (2019). https://doi.org/10.1088/1755-1315/351/1/012020

    Article  Google Scholar 

  7. Shin, Y.: Prediction of chlorophyll-a concentrations in the Nakdong river using machine learning methods. Water 12, 1822 (2020)

    Article  Google Scholar 

  8. Pérez-Ruzafa, A., Marcos, C., Pérez-Ruzafa, I.M., Barcala, E., Hegazi, M.I., Quispe, J.: Detecting changes resulting from human pressure in a naturally quick-changing and heterogeneous environment: Spatial and temporal scales of variability in coastal lagoons. Estuarine, Coastal Shelf Sci. 75(1–2), 175–188 (2007). https://doi.org/10.1016/j.ecss.2007.04.030

    Article  Google Scholar 

  9. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. In: Parallel distributed processing: explorations in the microstructure of cognition, vol. 1, pp 318–362. MIT Press, Cambridge, MA, USA (1986)

    Google Scholar 

  10. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359–366 (1989)

    Article  Google Scholar 

  11. MacKay, D.J.C.: Bayesian interpolation. Neural Comput. 4, 415–447 (1992)

    Article  Google Scholar 

  12. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)

    Article  Google Scholar 

  13. Hochreiter, S.: The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int. J. Unc., Fuzz. Knowl.-Based Syst. 6, 107–116 (1998)

    Article  Google Scholar 

  14. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)

    Article  MathSciNet  Google Scholar 

  15. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1226–1238 (2005)

    Article  Google Scholar 

  16. González-Enrique, J., Ruiz-Aguilar, J.J., Moscoso-López, J.A., Urda, D., Turias, I.J.: A comparison of ranking filter methods applied to the estimation of NO2 concentrations in the Bay of Algeciras (Spain). Stoch. Environ. Res. Risk Assess. 35(10), 1999–2019 (2021). https://doi.org/10.1007/s00477-021-01992-4

    Article  Google Scholar 

  17. González-Enrique, J., et al.: Artificial neural networks, sequence-to-sequence LSTMs, and exogenous variables as analytical tools for NO2 (air pollution) forecasting. A case study in the Bay of Algeciras (Spain). Sensors 21, 1770 (2021)

    Article  Google Scholar 

  18. Bergmeir, C., Benítez, J.M.: On the use of cross-validation for time series predictor evaluation. Inf. Sci. (Ny) 191, 192–213 (2012)

    Article  Google Scholar 

  19. Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32, 675–701 (1937)

    Article  Google Scholar 

  20. Hochberg, Y., Tamhane, A.C.: Multiple Comparison Procedures. John Wiley & Sons Inc., New York, NY, USA (1987)

    Book  Google Scholar 

  21. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian Optimization of Machine Learning Algorithms. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, pp. 2951–2959. Curran Associates, Inc. (2012)

    Google Scholar 

Download references

Acknowledgments

This work is part of the research projects RTI2018–098160-B-I00 supported by MICINN (Ministerio de Ciencia e Innovación-Spain) and “EnviroPorts. Investigación de técnicas de análisis y predicción de series temporales de parámetros ambientales y su interrelación con tráfico marítimo en entornos portuarios”. Expediente 2021.08.CT01.000044. Financiado por el Instituto de Fomento de la Región de Murcia (INFO) dentro del PROGRAMA DE AYUDAS DESTINADAS A CENTROS TECNOLÓGICOS DE LA REGIÓN DE MURCIA DESTINADAS A LA REALIZACIÓN DE ACTIVIDADES I+D DE CARÁCTER NO ECONÓMICO. MODALIDAD 1: “PROYECTOS I+D INDEPENDIENTE”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier González-Enrique .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

González-Enrique, J. et al. (2023). Deep Learning Approach for the Prediction of the Concentration of Chlorophyll ɑ in Seawater. A Case Study in El Mar Menor (Spain). In: García Bringas, P., et al. 17th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2022). SOCO 2022. Lecture Notes in Networks and Systems, vol 531. Springer, Cham. https://doi.org/10.1007/978-3-031-18050-7_8

Download citation

Publish with us

Policies and ethics