Abstract
Analyzing event logs generated during the execution of digital processes, organizations can monitor the behavior of dysfunctional or unspecified processes. For achieving the most refined results, high-quality and up-to-date process models are required. However, the selection of the proper process discovery algorithm is often addressed by human experts that can relate quality criteria, event logs behavior, and discovery techniques. Exploiting a meta-learning approach, we created a procedure that identifies the optimal discovery technique based on a user-defined balance of quality metrics. Our experiments exploited 1091 event logs representing extensive possible business process behaviors. Given a set of available algorithms, we obtained an F-score of 0.76 for recommending the discovery algorithm that maximizes quality criteria. Moreover, our method supports a more in-depth investigation of the process discovery problem by mapping log behavior and discovery techniques.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
van der Aalst, W.M.P.: Process Mining: Data Science in Action, 2nd edn. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4
Van der Aalst, W.M., Rubin, V., Verbeek, H., van Dongen, B.F., Kindler, E., Günther, C.W.: Process mining: a two-step approach to balance between underfitting and overfitting. Softw. Syst. Model. 9(1), 87 (2010). https://doi.org/10.1007/s10270-008-0106-z
Augusto, A., et al.: Automated discovery of process models from event logs: review and benchmark. IEEE Trans. Knowl. Data Eng. 31(4), 686–705 (2019)
Augusto, A., Conforti, R., Dumas, M., La Rosa, M., Polyvyanyy, A.: Split miner: automated discovery of accurate and simple business process models from event logs. Knowl. Inf. Syst. 59(2), 251–284 (2018). https://doi.org/10.1007/s10115-018-1214-x
Back, C.O., Debois, S., Slaats, T.: Entropy as a measure of log variability. J. Data Semant. 8(2), 129–156 (2019)
Barbon Junior, S., Ceravolo, P., Damiani, E., Marques Tavares, G.: Evaluating trace encoding methods in process mining. In: Bowles, J., Broccia, G., Nanni, M. (eds.) DataMod 2020. LNCS, vol. 12611, pp. 174–189. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-70650-0_11
Berti, A., van der Aalst, W.M.P.: Reviving token-based replay: increasing speed while improving diagnostics. In: van der Aalst, W.M.P., Bergenthum, R., Carmona, J. (eds.) Proceedings of the International Workshop on Algorithms Theories for the Analysis of Event Data 2019 ATAED@Petri Nets/ACSD 2019. CEUR Workshop Proceedings, vol. 2371, pp. 87–103. CEUR-WS.org (2019)
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: Quality dimensions in process discovery: the importance of fitness, precision, generalization and simplicity. Int. J. Coop. Inf. Syst. 23(01), 1440001 (2014)
Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: On the role of fitness, precision, generalization and simplicity in process discovery. In: Meersman, R., et al. (eds.) OTM 2012. LNCS, vol. 7565, pp. 305–322. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33606-5_19
Ceravolo, P., Tavares, G.M., Junior, S.B., Damiani, E.: Evaluation goals for online process mining: a concept drift perspective. IEEE Trans. Serv. Comput. 15, 2473–2489 (2020)
De Weerdt, J., De Backer, M., Vanthienen, J., Baesens, B.: A multi-dimensional quality assessment of state-of-the-art process discovery algorithms using real-life event logs. Inf. Syst. 37(7), 654–676 (2012)
He, X., Zhao, K., Chu, X.: AutoML: a survey of the state-of-the-art. Knowl.-Based Syst. 212, 106622 (2021)
Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs - a constructive approach. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38697-8_17
Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs containing infrequent behaviour. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 66–78. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06257-0_6
Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discovery with guarantees. In: Gaaloul, K., Schmidt, R., Nurcan, S., Guerreiro, S., Ma, Q. (eds.) CAISE 2015. LNBIP, vol. 214, pp. 85–101. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19237-6_6
Lorena, A.C., Garcia, L.P.F., Lehmann, J., Souto, M.C.P., Ho, T.K.: How complex is your classification problem? A survey on measuring classification complexity. ACM Comput. Surv. 52(5), 1–34 (2019)
Mendling, J., Depaire, B., Leopold, H.: Theory and practice of algorithm engineering (2021)
Muñoz-Gama, J., Carmona, J.: A fresh look at precision in process conformance. In: Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 211–226. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15618-2_16
Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4), 541–580 (1989)
Pérez-Alfonso, D., Yzquierdo-Herrera, R., Lazo-Cortés, M.: Recommendation of process discovery algorithms: a classification problem. Res. Comput. Sci 61, 33–42 (2013)
Pourbafrani, M., van der Aalst, W.M.P.: Extracting process features from event logs to learn coarse-grained simulation models. In: La Rosa, M., Sadiq, S., Teniente, E. (eds.) CAiSE 2021. LNCS, vol. 12751, pp. 125–140. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79382-1_8
Ribeiro, J., Carmona, J.: A method for assessing parameter impact on control-flow discovery algorithms, pp. 83–96. CEUR-WS.org (2015)
Ribeiro, J., Carmona, J., Mısır, M., Sebag, M.: A recommender system for process discovery. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 67–83. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10172-9_5
Rice, J.R.: The algorithm selection problem. In: Advances in Computers, vol. 15, pp. 65–118. Elsevier (1976)
dos Santos Garcia, C., et al.: Process mining techniques and applications a systematic mapping study. Expert Syst. Appl. 133, 260–295 (2019)
Tipping, M.E., Bishop, C.M.: Mixtures of probabilistic principal component analyzers. Neural Comput. 11(2), 443–482 (1999)
van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)
Vilalta, R., Drissi, Y.: A perspective view and survey of meta-learning. Artif. Intell. Rev. 18(2), 77–95 (2002)
Vázquez-Barreiros, B., Mucientes, M., Lama, M.: ProDiGen: mining complete, precise and minimal structure process models with a genetic algorithm. Inf. Sci. 294, 315–333 (2015)
Wang, J., Wong, R.K., Ding, J., Guo, Q., Wen, L.: Efficient selection of process mining algorithms. IEEE Trans. Serv. Comput. 6(4), 484–496 (2013)
Weijters, A., Aalst, W., Medeiros, A.: Process mining with the heuristics miner-algorithm. BETA Working Paper Series, WP 166, Eindhoven University of Technology, Eindhoven (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Tavares, G.M., Junior, S.B., Damiani, E. (2022). Automating Process Discovery Through Meta-learning. In: Sellami, M., Ceravolo, P., Reijers, H.A., Gaaloul, W., Panetto, H. (eds) Cooperative Information Systems. CoopIS 2022. Lecture Notes in Computer Science, vol 13591. Springer, Cham. https://doi.org/10.1007/978-3-031-17834-4_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-17834-4_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-17833-7
Online ISBN: 978-3-031-17834-4
eBook Packages: Computer ScienceComputer Science (R0)