AnyMApp Framework: Anonymous Digital Twin Human-App Interactions | SpringerLink
Skip to main content

AnyMApp Framework: Anonymous Digital Twin Human-App Interactions

  • Conference paper
  • First Online:
HCI International 2022 - Late Breaking Papers. Design, User Experience and Interaction (HCII 2022)

Abstract

As technology is more than ever part of everyday life and activities, their benefits and potential have to be optimized. Currently, this is not happening and technology adherence and continued use is very low. We need to have simple but clear means to understand why that is so and what needs to be done to improve it close to the technology itself and its users. This work introduces AnyMApp, an anonymous digital twin human-app interactions framework to provide online anonymous testing of mock-up applications. These applications may or may not exist and even be in different stages of their deployment. The main goal of AnyMApp is to provide an easy, online way to collect data from users’ interactions with the application and complement these with questions to the user regarding contextual, demographic and domain specific. Collected data will be used to quickly detect usability and interactional problems but can also be used to explore relations between humans and technology, and identify experiences and behavioural patterns of the target population.

R. Chilro—Independent Researcher.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stephanidis, C., et al.: Seven HCI grand challenges. Int. J. Hum. Comput. Interact. 35(14), 1229–1269 (2019). https://doi.org/10.1080/10447318.2019.1619259

  2. Chiaramida, V., Pinci, F., Buy, U., Gjomemo, R.: AppSeer: discovering flawed interactions among Android components. In: Proceedings of the 1st International Workshop on Advances in Mobile App Analysis (A-Mobile 2018), pp. 29–34. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3243218.3243225

  3. The Human Factor: Technology Changes Faster Than Humans. The State of Security. Tripwire Guest Authors. https://www.tripwire.com/state-of-security/off-topic/human-factor-technology-changes-faster-humans/. Accessed 16 Feb 2021

  4. Sigg, S., Lagerspetz, E., Peltonen, E., Nurmi, P., Tarkoma, S.: Exploiting usage to predict instantaneous app popularity: trend filters and retention rates. ACM Trans. Web 13(2), Article no. 13, 25 p., April 2019. https://doi.org/10.1145/3199677

  5. Mennig, P., Scherr, S.A., Elberzhager, F.: Supporting rapid product changes through emotional tracking. In: 2019 IEEE/ACM 4th International Workshop on Emotion Awareness in Software Engineering (SEmotion), Montreal, QC, Canada, pp. 8–12 (2019). https://doi.org/10.1109/SEmotion.2019.00009

  6. Donker, T., Petrie, K., Proudfoot, J., Clarke, J., Birch, M.R., Christensen, H.: Smartphones forsmarter delivery of mental health programs: a systematic review. J. Med. Internet Res. 15(11), e247 (2013 15). https://doi.org/10.2196/jmir.2791. PMID: 24240579; PMCID: PMC3841358

  7. Boateng, G., Batsis, J.A., Halter, R., Kotz, D.: ActivityAware: an app for real-time daily activity level monitoring on the Amulet wrist-worn device. In: 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerComWorkshops), Kona, HI, pp. 431–435 (2017). https://doi.org/10.1109/PERCOMW.2017.7917601

  8. Ferre, X., Villalba, E., Julio, H., Zhu, H.: Extending mobile app analytics for usability test logging. In: Bernhaupt, R., Dalvi, G., Joshi, A., K. Balkrishan, D., O’Neill, J., Winckler, M. (eds.) INTERACT 2017. LNCS, vol. 10515, pp. 114–131. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67687-6_9

    Chapter  Google Scholar 

  9. Turkington, R., Mulvenna, M., Bond, R., O’Neill, S., Armour, C.: The application of user event log data for mental health and wellbeing analysis. In: Proceedings of the 32nd International BCS Human Computer Interaction Conference (HCI 2018), Swindon, GBR, Article no. 4, pp. 1–14. BCS Learning & Development Ltd. (2018). https://doi.org/10.14236/ewic/HCI2018.4

  10. Böhm, A.K., Jensen, M.L., Sørensen, M.R., Stargardt, T.: Real-world evidence of user engagement with mobile health for diabetes management: longitudinal observational study. JMIR Mhealth Uhealth. 8(11), e22212 (2020). https://doi.org/10.2196/22212. PMID:32975198; PMCID: PMC7679206

    Article  Google Scholar 

  11. Deng, T., et al.: Measuring smartphone usage and task switching with log tracking and self-reports. Mobile Media Commun. 7, 23–33 (2019)

    Article  Google Scholar 

  12. Boase, J., Ling, R.: Measuring mobile phone use: self-report versus log data. J. Comput. Med. Commun. 18(4), 508–519 (2013). https://doi.org/10.1111/jcc4.12021

  13. Herselman, M.: A scoping review of the use of data analytics for the evaluation of mhealth applications (2020). sun.ac.za

    Google Scholar 

  14. Ferreira, A., Muchagata, J., Vieira-Marques, P., Abrantes, D., Teles, S.: Perceptions of security and privacy in mHealth. In: Moallem, A. (eds.) HCII 2021. LNCS, vol. 12788, pp. 297–309. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77392-2_19

  15. Moura, P., Fazendeiro, P., Inácio, P.R.M., Vieira-Marques, P., Ferreira, A.: Assessing access control risk for mHealth: a Delphi study to categorize security of health data and provide risk assessment for mobile apps. J. Healthc. Eng., Article no. 5601068, 14 p. (2020). https://doi.org/10.1155/2020/5601068

  16. Ferreira, A., Muchagata, J.: TagUBig - taming your big data. In: 2018 International Carnahan Conference on Security Technology (ICCST), Montreal, QC, Canada, pp. 1–5 (2018). https://doi.org/10.1109/CCST.2018.8585539

  17. Billmann, M., Böhm, M., Krcmar, H.: Use of workplace health promotion apps: analysis of employee log data. Health Policy Technol. 9(3), 285–293 (2020). ISSN 2211-8837. https://doi.org/10.1016/j.hlpt.2020.06.003

  18. Tian, Y., Zhou, K., Lalmas, M., Liu, Y., Pelleg, D.: Cohort modeling based app category usage prediction. In: Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization (UMAP 2020), pp. 248–256. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3340631.3394849

  19. Ferreira, A., Vieira-Marques, P., Almeida, R., Fernandes, J., Fonseca, J.: How inspiring is your app: a usability take on an app for asthma medication adherence. In: 11th International Conference on e-Health, pp. 225–229 (2019)

    Google Scholar 

  20. Aliannejadi, M., Harvey, M., Costa, L., Pointon, M., Crestani, F.: Understanding mobile search task relevance and user behaviour in context. In: Proceedings of the 2019 Conference on Human Information Interaction and Retrieval (CHIIR 2019), pp. 143–151. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3295750.3298923

  21. McCallum, C., Rooksby, J., Gray, C.M.: Evaluating the impact of physical activity apps and wearables: interdisciplinary review. JMIR Mhealth Uhealth 6(3), e58 (2018). https://doi.org/10.2196/mhealth.9054. PMID: 29572200; PMCID: PMC5889496

  22. General Data Protection Regulation (EU) 2016/679 of the European Parliament and of the Council L 119. Official Journal of the European Union

    Google Scholar 

  23. Qin, Z., et al.: Demographic information prediction based on smartphone application usage. In: 2014 International Conference on Smart Computing, Hong Kong, China, pp. 183–190 (2014). https://doi.org/10.1109/SMARTCOMP.2014.7043857

  24. Olson, J.S., Kellogg, W.A.: Ways of Knowing in HCI, Springer, New York (2014). https://doi.org/10.1007/978-1-4939-0378-8

  25. Stragier, J., et al.: Data mining in the development of mobile health apps: assessing in-app navigation through Markov chain analysis. J. Med. Internet Res. 21(6), e11934 (2019)

    Google Scholar 

  26. Qiu, L., Zhang, Z., Shen, Z., Sun, G.: AppTrace: dynamic trace on android devices. In: 2015 IEEE International Conference on Communications (ICC), London, UK, pp. 7145–7150 (2015). https://doi.org/10.1109/ICC.2015.7249466

  27. De Nadai, M., Cardoso, A., Lima, A., et al.: Strategies and limitations in app usage and human mobility. Sci. Rep. 9, 10935 (2019). https://doi.org/10.1038/s41598-019-47493-x

  28. Gruschka, N., Mavroeidis, V., Vishi, K., Jensen, M.: Privacy issues and data protection in big data: a case study analysis under GDPR. In: 2018 IEEE International Conference on Big Data (Big Data), pp. 5027–5033 (2018). https://doi.org/10.1109/BigData.2018.8622621

  29. Rocher, L., Hendrickx, J.M., de Montjoye, Y.A.: Estimating the success of re-identifications in incomplete datasets using generative models. Nat. Commun. 10, 3069 (2019). https://doi.org/10.1038/s41467-019-10933-3

  30. De-Identification tools. Privacy Engineering Program. NIST – Information Technology Laboratory/Applied Sybersecurity Division. https://www.nist.gov/itl/applied-cybersecurity/privacy-engineering/collaboration-space/focus-areas/de-id/tools. Accessed 25 May 2022

  31. Valli Kumari, V., Varma, N.S., Sri Krishna, A., Ramana, K.V., Raju, K.V.S.V.N.: Checking anonymity levels for anonymized data. In: Natarajan, R., Ojo, A. (eds.) ICDCIT 2011. LNCS, vol. 6536, pp. 278–289. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19056-8_21

  32. Gordon, M.L., Gatys, L., Guestrin, C., Bigham, J.P., Trister, A., Patel, K.: App usage predicts cognitive ability in older adults. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (CHI 2019), paper 168, pp. 1–12. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3290605.3300398

Download references

Acknowledgements

This work is financed by project AnyMApp - Anonymous Digital Twin for Human-App Interactions (EXPL/CCI-COM/0052/2021) (FCT – Fundação para a Ciência e Tecnologia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Ferreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ferreira, A., Chilro, R., Cruz-Correia, R. (2022). AnyMApp Framework: Anonymous Digital Twin Human-App Interactions. In: Kurosu, M., et al. HCI International 2022 - Late Breaking Papers. Design, User Experience and Interaction. HCII 2022. Lecture Notes in Computer Science, vol 13516. Springer, Cham. https://doi.org/10.1007/978-3-031-17615-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17615-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17614-2

  • Online ISBN: 978-3-031-17615-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics