Warm Start Active Learning with Proxy Labels and Selection via Semi-supervised Fine-Tuning | SpringerLink
Skip to main content

Warm Start Active Learning with Proxy Labels and Selection via Semi-supervised Fine-Tuning

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13438))

  • 8585 Accesses

Abstract

Which volume to annotate next is a challenging problem in building medical imaging datasets for deep learning. One of the promising methods to approach this question is active learning (AL). However, AL has been a hard nut to crack in terms of which AL algorithm and acquisition functions are most useful for which datasets. Also, the problem is exacerbated with which volumes to label first when there is zero labeled data to start with. This is known as the cold start problem in AL. We propose two novel strategies for AL specifically for 3D image segmentation. First, we tackle the cold start problem by proposing a proxy task and then utilizing uncertainty generated from the proxy task to rank the unlabeled data to be annotated. Second, we craft a two-stage learning framework for each active iteration where the unlabeled data is also used in the second stage as a semi-supervised fine-tuning strategy. We show the promise of our approach on two well-known large public datasets from medical segmentation decathlon. The results indicate that the initial selection of data and semi-supervised framework both showed significant improvement for several AL strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://radiopaedia.org/articles/windowing-ct.

  2. 2.

    https://github.com/Project-MONAI/MONAI.

References

  1. Ash, J.T., Zhang, C., Krishnamurthy, A., Langford, J., Agarwal, A.: Deep batch active learning by diverse, uncertain gradient lower bounds. arXiv preprint arXiv:1906.03671 (2019)

  2. Beluch, W.H., Genewein, T., Nürnberger, A., Köhler, J.M.: The power of ensembles for active learning in image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9368–9377 (2018)

    Google Scholar 

  3. Bengar, J.Z., Raducanu, B., Weijer, J.v.d.: When deep learners change their mind: learning dynamics for active learning. In: International Conference on Computer Analysis of Images and Patterns, pp. 403–413. Springer (2021). https://doi.org/10.48550/arXiv.2107.14707

  4. Bengar, J.Z., van de Weijer, J., Twardowski, B., Raducanu, B.: Reducing label effort: Self-supervised meets active learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1631–1639 (2021)

    Google Scholar 

  5. Chitta, K., Alvarez, J.M., Lesnikowski, A.: Large-scale visual active learning with deep probabilistic ensembles. arXiv preprint arXiv:1811.03575 (2018)

  6. Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In: International Conference on Machine Learning, pp. 1050–1059 (2016)

    Google Scholar 

  7. Gal, Y., Islam, R., Ghahramani, Z.: Deep bayesian active learning with image data. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 1183–1192. JMLR. org (2017)

    Google Scholar 

  8. He, Y., Yang, D., Roth, H., Zhao, C., Xu, D.: Dints: differentiable neural network topology search for 3d medical image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5841–5850 (2021)

    Google Scholar 

  9. Houlsby, N., Hernández-Lobato, J.M., Ghahramani, Z.: Cold-start active learning with robust ordinal matrix factorization. In: International Conference on Machine Learning, pp. 766–774. PMLR (2014)

    Google Scholar 

  10. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnu-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  12. Kuo, W., Häne, C., Yuh, E., Mukherjee, P., Malik, J.: Cost-sensitive active learning for intracranial hemorrhage detection. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 715–723. Springer (2018)

    Google Scholar 

  13. Lai, Z., Wang, C., Oliveira, L.C., Dugger, B.N., Cheung, S.C., Chuah, C.N.: Joint semi-supervised and active learning for segmentation of gigapixel pathology images with cost-effective labeling. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 591–600 (2021)

    Google Scholar 

  14. Li, S., Zhang, C., He, X.: Shape-aware semi-supervised 3D semantic segmentation for medical images. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 552–561. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_54

    Chapter  Google Scholar 

  15. Nath, V., et al.: The power of proxy data and proxy networks for hyper-parameter optimization in medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 456–465. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_43

    Chapter  Google Scholar 

  16. Nath, V., Yang, D., Landman, B.A., Xu, D., Roth, H.R.: Diminishing uncertainty within the training pool: Active learning for medical image segmentation. IEEE Trans. Med. Imaging 40(10), 2534–2547 (2020)

    Article  Google Scholar 

  17. Nguyen, V.L., Shaker, M.H., Hüllermeier, E.: How to measure uncertainty in uncertainty sampling for active learning. Mach. Learn. 111, 1–34 (2021)

    MathSciNet  MATH  Google Scholar 

  18. Ouyang, C., Biffi, C., Chen, C., Kart, T., Qiu, H., Rueckert, D.: Self-supervision with superpixels: training few-shot medical image segmentation without annotation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12374, pp. 762–780. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58526-6_45

    Chapter  Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  20. Sener, O., Savarese, S.: Active learning for convolutional neural networks: A core-set approach. arXiv preprint arXiv:1708.00489 (2017)

  21. Settles, B.: Active learning. Synth. Lect. Artif. Intell. Mach. Learn. 6(1), 1–114 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Siméoni, O., Budnik, M., Avrithis, Y., Gravier, G.: Rethinking deep active learning: Using unlabeled data at model training. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 1220–1227. IEEE (2021)

    Google Scholar 

  23. Simpson, A.L., et al.: A large annotated medical image dataset for the development and evaluation of segmentation algorithms. arXiv preprint arXiv:1902.09063 (2019)

  24. Sourati, J., Gholipour, A., Dy, J.G., Kurugol, S., Warfield, S.K.: Active deep learning with fisher information for patch-wise semantic segmentation. In: DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 83–91. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_10

    Chapter  Google Scholar 

  25. Tang, Y., et al.: Self-supervised pre-training of swin transformers for 3d medical image analysis. arXiv preprint arXiv:2111.14791 (2021)

  26. Wang, G., Li, W., Aertsen, M., Deprest, J., Ourselin, S., Vercauteren, T.: Test-time augmentation with uncertainty estimation for deep learning-based medical image segmentation (2018)

    Google Scholar 

  27. Wang, J., et al.: Semi-supervised active learning for instance segmentation via scoring predictions. arXiv preprint arXiv:2012.04829 (2020)

  28. Wang, S., et al.: Annotation-efficient deep learning for automatic medical image segmentation. Nat. Commun. 12(1), 1–13 (2021)

    Google Scholar 

  29. Xia, Y., et al.: 3d semi-supervised learning with uncertainty-aware multi-view co-training. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3646–3655 (2020)

    Google Scholar 

  30. Yang, L., Zhang, Y., Chen, J., Zhang, S., Chen, D.Z.: Suggestive annotation: A deep active learning framework for biomedical image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 399–407. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_46

    Chapter  Google Scholar 

  31. Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 605–613. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_67

    Chapter  Google Scholar 

  32. Yuan, M., Lin, H.T., Boyd-Graber, J.: Cold-start active learning through self-supervised language modeling. arXiv preprint arXiv:2010.09535 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishwesh Nath .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 315 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nath, V., Yang, D., Roth, H.R., Xu, D. (2022). Warm Start Active Learning with Proxy Labels and Selection via Semi-supervised Fine-Tuning. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13438. Springer, Cham. https://doi.org/10.1007/978-3-031-16452-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16452-1_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16451-4

  • Online ISBN: 978-3-031-16452-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics