Abstract
Image registration is useful for quantifying morphological changes in longitudinal MR images from prostate cancer patients. This paper describes a development in improving the learning-based registration algorithms, for this challenging clinical application often with highly variable yet limited training data. First, we report that the latent space can be clustered into a much lower dimensional space than that commonly found as bottleneck features at the deep layer of a trained registration network. Based on this observation, we propose a hierarchical quantization method, discretizing the learned feature vectors using a jointly-trained dictionary with a constrained size, in order to improve the generalisation of the registration networks. Furthermore, a novel collaborative dictionary is independently optimised to incorporate additional prior information, such as the segmentation of the gland or other regions of interest, in the latent quantized space. Based on 216 real clinical images from 86 prostate cancer patients, we show the efficacy of both the designed components. Improved registration accuracy was obtained with statistical significance, in terms of both Dice on gland and target registration error on corresponding landmarks, the latter of which achieved 5.46 mm, an improvement of 28.7% from the baseline without quantization. Experimental results also show that the difference in performance was indeed minimised between training and testing data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)
Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradients through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432 (2013)
Bloch, N., et al.: NCI-ISBI 2013 challenge: automated segmentation of prostate structures. Cancer Imaging Arch. 370(6), 5 (2015)
Chen, K., Lee, C.G.: Incremental few-shot learning via vector quantization in deep embedded space. In: ICLR (2021)
Chen, X., Meng, Y., Zhao, Y., Williams, R., Vallabhaneni, S.R., Zheng, Y.: Learning unsupervised parameter-specific affine transformation for medical images registration. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) MICCAI 2021. LNCS, vol. 12904, pp. 24–34. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_3
Kim, B., Kim, D.H., Park, S.H., Kim, J., Lee, J.G., Ye, J.C.: CycleMorph: cycle consistent unsupervised deformable image registration. Med. Image Anal. 71 (2021)
Kim, C.K., Park, B.K., Lee, H.M., Kim, S.S., Kim, E.: MRI techniques for prediction of local tumor progression after high-intensity focused ultrasonic ablation of prostate cancer. Am. J. Roentgenol. 190(5), 1180–1186 (2008)
Liu, F., et al.: SAME: deformable image registration based on self-supervised anatomical embeddings. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12904, pp. 87–97. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_9
Liu, L., Aviles-Rivero, A.I., Schönlieb, C.B.: Contrastive registration for unsupervised medical image segmentation. arXiv preprint arXiv:2011.08894 (2020)
Maaten, L.v.d., Hinton, G.: Visualizing data using t-SNE. Journal of Mach. Learn. Res. 9(Nov), 2579–2605 (2008)
Modat, M., et al.: Fast free-form deformation using graphics processing units. Comput. Methods Programs Biomed. 98(3), 278–284 (2010)
Mok, T.C.W., Chung, A.C.S.: Large deformation diffeomorphic image registration with laplacian pyramid networks. In: Martel, A.L., Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 211–221. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_21
Molchanov, D., Ashukha, A., Vetrov, D.: Variational dropout sparsifies deep neural networks. In: ICML, pp. 2498–2507. PMLR (2017)
Moore, C.M., et al.: Reporting magnetic resonance imaging in men on active surveillance for prostate cancer: the precise recommendations-a report of a european school of oncology task force. Eur. Urol. 71(4), 648–655 (2017)
Peng, J., Liu, D., Xu, S., Li, H.: Generating diverse structure for image inpainting with hierarchical VQ-VAE. In: CVPR. pp. 10775–10784 (2021)
Razavi, A., Van den Oord, A., Vinyals, O.: Generating diverse high-fidelity images with VQ-VAE-2. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Schoots, I.G., Petrides, N., Giganti, F., Bokhorst, L.P., Rannikko, A., Klotz, L., Villers, A., Hugosson, J., Moore, C.M.: Magnetic resonance imaging in active surveillance of prostate cancer: a systematic review. Eur. Urol. 67(4), 627–636 (2015)
Song, X., et al.: Cross-modal attention for mri and ultrasound volume registration. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12904, pp. 66–75. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_7
Van Den Oord, A., Vinyals, O., et al.: Neural discrete representation learning. In: Conference on Advances in Neural Information Processing Systems, vol. 30 (2017)
Wang, J., Zhang, M.: DeepFlash: an efficient network for learning-based medical image registration. In: CVPR, pp. 4444–4452 (2020)
Xu, J., Chen, E.Z., Chen, X., Chen, T., Sun, S.: Multi-scale neural odes for 3d medical image registration. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12904, pp. 213–223. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_21
Xu, Zhenlin, Niethammer, Marc: DeepAtlas: joint semi-supervised learning of image registration and segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 420–429. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_47
Yang, Q., Fu, Y., Giganti, F., Ghavami, N., Chen, Q., Noble, J.A., Vercauteren, T., Barratt, D., Hu, Y.: Longitudinal image registration with temporal-order and subject-specificity discrimination. In: MICCAI. pp. 243–252. Springer (2020)
Ye, M., Kanski, M., Yang, D., Chang, Q., Yan, Z., Huang, Q., Axel, L., Metaxas, D.: Deeptag: An unsupervised deep learning method for motion tracking on cardiac tagging magnetic resonance images. In: CVPR. pp. 7261–7271 (June 2021)
Zeng, Q., et al.: Label-driven magnetic resonance imaging (MRI)-transrectal ultrasound (TRUS) registration using weakly supervised learning for MRI-guided prostate radiotherapy. Phys. Med. Biol. 65(13) (2020)
Zhang, M., et al.: Frequency diffeomorphisms for efficient image registration. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 559–570. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_44
Zhang, Yungeng, Pei, Yuru, Zha, Hongbin: Learning Dual transformer network for diffeomorphic registration. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12904, pp. 129–138. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_13
Acknowledgements
This work was supported by the International Alliance for Cancer Early Detection, an alliance between Cancer Research UK [C28070/A30912; C73666/A31378], Canary Center at Stanford University, the University of Cambridge, OHSU Knight Cancer Institute, University College London and the University of Manchester. This work was also supported by the Wellcome/EPSRC Centre for Interventional and Surgical Sciences [203145Z/16/Z].
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Shen, Z. et al. (2022). Collaborative Quantization Embeddings for Intra-subject Prostate MR Image Registration. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13436. Springer, Cham. https://doi.org/10.1007/978-3-031-16446-0_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-16446-0_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16445-3
Online ISBN: 978-3-031-16446-0
eBook Packages: Computer ScienceComputer Science (R0)