Collaborative Quantization Embeddings for Intra-subject Prostate MR Image Registration | SpringerLink
Skip to main content

Collaborative Quantization Embeddings for Intra-subject Prostate MR Image Registration

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Image registration is useful for quantifying morphological changes in longitudinal MR images from prostate cancer patients. This paper describes a development in improving the learning-based registration algorithms, for this challenging clinical application often with highly variable yet limited training data. First, we report that the latent space can be clustered into a much lower dimensional space than that commonly found as bottleneck features at the deep layer of a trained registration network. Based on this observation, we propose a hierarchical quantization method, discretizing the learned feature vectors using a jointly-trained dictionary with a constrained size, in order to improve the generalisation of the registration networks. Furthermore, a novel collaborative dictionary is independently optimised to incorporate additional prior information, such as the segmentation of the gland or other regions of interest, in the latent quantized space. Based on 216 real clinical images from 86 prostate cancer patients, we show the efficacy of both the designed components. Improved registration accuracy was obtained with statistical significance, in terms of both Dice on gland and target registration error on corresponding landmarks, the latter of which achieved 5.46 mm, an improvement of 28.7% from the baseline without quantization. Experimental results also show that the difference in performance was indeed minimised between training and testing data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  2. Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradients through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432 (2013)

  3. Bloch, N., et al.: NCI-ISBI 2013 challenge: automated segmentation of prostate structures. Cancer Imaging Arch. 370(6), 5 (2015)

    Google Scholar 

  4. Chen, K., Lee, C.G.: Incremental few-shot learning via vector quantization in deep embedded space. In: ICLR (2021)

    Google Scholar 

  5. Chen, X., Meng, Y., Zhao, Y., Williams, R., Vallabhaneni, S.R., Zheng, Y.: Learning unsupervised parameter-specific affine transformation for medical images registration. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) MICCAI 2021. LNCS, vol. 12904, pp. 24–34. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_3

  6. Kim, B., Kim, D.H., Park, S.H., Kim, J., Lee, J.G., Ye, J.C.: CycleMorph: cycle consistent unsupervised deformable image registration. Med. Image Anal. 71 (2021)

    Google Scholar 

  7. Kim, C.K., Park, B.K., Lee, H.M., Kim, S.S., Kim, E.: MRI techniques for prediction of local tumor progression after high-intensity focused ultrasonic ablation of prostate cancer. Am. J. Roentgenol. 190(5), 1180–1186 (2008)

    Google Scholar 

  8. Liu, F., et al.: SAME: deformable image registration based on self-supervised anatomical embeddings. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12904, pp. 87–97. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_9

  9. Liu, L., Aviles-Rivero, A.I., Schönlieb, C.B.: Contrastive registration for unsupervised medical image segmentation. arXiv preprint arXiv:2011.08894 (2020)

  10. Maaten, L.v.d., Hinton, G.: Visualizing data using t-SNE. Journal of Mach. Learn. Res. 9(Nov), 2579–2605 (2008)

    Google Scholar 

  11. Modat, M., et al.: Fast free-form deformation using graphics processing units. Comput. Methods Programs Biomed. 98(3), 278–284 (2010)

    Google Scholar 

  12. Mok, T.C.W., Chung, A.C.S.: Large deformation diffeomorphic image registration with laplacian pyramid networks. In: Martel, A.L., Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 211–221. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_21

  13. Molchanov, D., Ashukha, A., Vetrov, D.: Variational dropout sparsifies deep neural networks. In: ICML, pp. 2498–2507. PMLR (2017)

    Google Scholar 

  14. Moore, C.M., et al.: Reporting magnetic resonance imaging in men on active surveillance for prostate cancer: the precise recommendations-a report of a european school of oncology task force. Eur. Urol. 71(4), 648–655 (2017)

    Google Scholar 

  15. Peng, J., Liu, D., Xu, S., Li, H.: Generating diverse structure for image inpainting with hierarchical VQ-VAE. In: CVPR. pp. 10775–10784 (2021)

    Google Scholar 

  16. Razavi, A., Van den Oord, A., Vinyals, O.: Generating diverse high-fidelity images with VQ-VAE-2. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  17. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  18. Schoots, I.G., Petrides, N., Giganti, F., Bokhorst, L.P., Rannikko, A., Klotz, L., Villers, A., Hugosson, J., Moore, C.M.: Magnetic resonance imaging in active surveillance of prostate cancer: a systematic review. Eur. Urol. 67(4), 627–636 (2015)

    Google Scholar 

  19. Song, X., et al.: Cross-modal attention for mri and ultrasound volume registration. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12904, pp. 66–75. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_7

  20. Van Den Oord, A., Vinyals, O., et al.: Neural discrete representation learning. In: Conference on Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  21. Wang, J., Zhang, M.: DeepFlash: an efficient network for learning-based medical image registration. In: CVPR, pp. 4444–4452 (2020)

    Google Scholar 

  22. Xu, J., Chen, E.Z., Chen, X., Chen, T., Sun, S.: Multi-scale neural odes for 3d medical image registration. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12904, pp. 213–223. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_21

  23. Xu, Zhenlin, Niethammer, Marc: DeepAtlas: joint semi-supervised learning of image registration and segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 420–429. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_47

  24. Yang, Q., Fu, Y., Giganti, F., Ghavami, N., Chen, Q., Noble, J.A., Vercauteren, T., Barratt, D., Hu, Y.: Longitudinal image registration with temporal-order and subject-specificity discrimination. In: MICCAI. pp. 243–252. Springer (2020)

    Google Scholar 

  25. Ye, M., Kanski, M., Yang, D., Chang, Q., Yan, Z., Huang, Q., Axel, L., Metaxas, D.: Deeptag: An unsupervised deep learning method for motion tracking on cardiac tagging magnetic resonance images. In: CVPR. pp. 7261–7271 (June 2021)

    Google Scholar 

  26. Zeng, Q., et al.: Label-driven magnetic resonance imaging (MRI)-transrectal ultrasound (TRUS) registration using weakly supervised learning for MRI-guided prostate radiotherapy. Phys. Med. Biol. 65(13) (2020)

    Google Scholar 

  27. Zhang, M., et al.: Frequency diffeomorphisms for efficient image registration. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 559–570. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_44

  28. Zhang, Yungeng, Pei, Yuru, Zha, Hongbin: Learning Dual transformer network for diffeomorphic registration. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12904, pp. 129–138. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_13

Download references

Acknowledgements

This work was supported by the International Alliance for Cancer Early Detection, an alliance between Cancer Research UK [C28070/A30912; C73666/A31378], Canary Center at Stanford University, the University of Cambridge, OHSU Knight Cancer Institute, University College London and the University of Manchester. This work was also supported by the Wellcome/EPSRC Centre for Interventional and Surgical Sciences [203145Z/16/Z].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziyi Shen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 9253 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shen, Z. et al. (2022). Collaborative Quantization Embeddings for Intra-subject Prostate MR Image Registration. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13436. Springer, Cham. https://doi.org/10.1007/978-3-031-16446-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16446-0_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16445-3

  • Online ISBN: 978-3-031-16446-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics