Federated Medical Image Analysis with Virtual Sample Synthesis | SpringerLink
Skip to main content

Federated Medical Image Analysis with Virtual Sample Synthesis

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13433))

Abstract

Hospitals and research institutions may not be willing to share their collected medical data due to privacy concerns, transmission cost, and the intrinsic value of the data. Federated medical image analysis is thus explored to obtain a global model without access to the images distributed on isolated clients. However, in real-world applications, the local data from each client are likely non-i.i.d distributed because of the variations in geographic factors, patient demographics, data collection process, and so on. Such heterogeneity in data poses severe challenges to the performance of federated learning. In this paper, we introduce federated medical image analysis with virtual sample synthesis (FedVSS). Our method can improve the generalization ability by adversarially synthesizing virtual training samples with the local models and also learn to align the local models by synthesizing high-confidence samples with regard to the global model. All synthesized data will be further utilized in local model updating. We conduct comprehensive experiments on five medical image datasets retrieved from MedMNIST and Camelyon17, and the experimental results validate the effectiveness of our method. Our code is available at Link.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adnan, M., Kalra, S., Cresswell, J.C., Taylor, G.W., Tizhoosh, H.R.: Federated learning and differential privacy for medical image analysis. Sci. Rep. 12(1), 1–10 (2022)

    Article  Google Scholar 

  2. Cetinkaya, A.E., Akin, M., Sagiroglu, S.: Improving performance of federated learning based medical image analysis in non-IID settings using image augmentation. In: 2021 International Conference on Information Security and Cryptology (ISCTURKEY), pp. 69–74. IEEE (2021)

    Google Scholar 

  3. He, C., et al.: FedML: a research library and benchmark for federated machine learning. arXiv preprint arXiv:2007.13518 (2020)

  4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  5. Jiang, M., Wang, Z., Dou, Q.: HarmoFL: harmonizing local and global drifts in federated learning on heterogeneous medical images. arXiv preprint arXiv:2112.10775 (2021)

  6. Karimireddy, S.P., Kale, S., Mohri, M., Reddi, S., Stich, S., Suresh, A.T.: SCAFFOLD: stochastic controlled averaging for federated learning. In: International Conference on Machine Learning, pp. 5132–5143. PMLR (2020)

    Google Scholar 

  7. Koh, P.W., et al.: WILDS: a benchmark of in-the-wild distribution shifts. In: International Conference on Machine Learning, pp. 5637–5664. PMLR (2021)

    Google Scholar 

  8. Li, D., Kar, A., Ravikumar, N., Frangi, A.F., Fidler, S.: Federated simulation for medical imaging. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 159–168. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_16

    Chapter  Google Scholar 

  9. Li, D., Wang, J.: FedMD: heterogenous federated learning via model distillation. arXiv preprint arXiv:1910.03581 (2019)

  10. Li, Q., He, B., Song, D.: Model-contrastive federated learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10713–10722 (2021)

    Google Scholar 

  11. Li, W., et al.: Privacy-preserving federated brain tumour segmentation. In: Suk, H.-I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 133–141. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_16

    Chapter  Google Scholar 

  12. Lin, T., Kong, L., Stich, S.U., Jaggi, M.: Ensemble distillation for robust model fusion in federated learning. arXiv preprint arXiv:2006.07242 (2020)

  13. Litjens, G., et al.: 1399 H &E-stained sentinel lymph node sections of breast cancer patients: the CAMELYON dataset. GigaScience 7(6), giy065 (2018)

    Google Scholar 

  14. Liu, Q., Chen, C., Qin, J., Dou, Q., Heng, P.A.: FedDG: federated domain generalization on medical image segmentation via episodic learning in continuous frequency space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1013–1023 (2021)

    Google Scholar 

  15. Liu, Q., Yang, H., Dou, Q., Heng, P.-A.: Federated semi-supervised medical image classification via inter-client relation matching. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 325–335. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_31

    Chapter  Google Scholar 

  16. Liu, T., Siegel, E., Shen, D.: Deep learning and medical image analysis for covid-19 diagnosis and prediction. Ann. Rev. Biomed. Eng. 24 (2022)

    Google Scholar 

  17. Liu, W., Wang, X., Owens, J., Li, Y.: Energy-based out-of-distribution detection. Adv. Neural. Inf. Process. Syst. 33, 21464–21475 (2020)

    Google Scholar 

  18. Luo, J., Wu, S.: FedSLD: federated learning with shared label distribution for medical image classification. arXiv preprint arXiv:2110.08378 (2021)

  19. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  20. Miyato, T., Maeda, S.I., Koyama, M., Ishii, S.: Virtual adversarial training: a regularization method for supervised and semi-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 41(8), 1979–1993 (2018)

    Article  Google Scholar 

  21. Qiu, Z., et al.: A deep learning approach for segmentation, classification, and visualization of 3-D high-frequency ultrasound images of mouse embryos. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68(7), 2460–2471 (2021)

    Article  Google Scholar 

  22. Reddi, S., et al.: Adaptive federated optimization. arXiv preprint arXiv:2003.00295 (2020)

  23. Roth, H.R., et al.: Federated whole prostate segmentation in MRI with personalized neural architectures. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 357–366. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_34

    Chapter  Google Scholar 

  24. Sahu, A.K., Li, T., Sanjabi, M., Zaheer, M., Talwalkar, A., Smith, V.: On the convergence of federated optimization in heterogeneous networks. arXiv preprint arXiv:1812.061273 (2018)

  25. Seo, H., Park, J., Oh, S., Bennis, M., Kim, S.L.: Federated knowledge distillation. arXiv preprint arXiv:2011.02367 (2020)

  26. Taleb, A., Lippert, C., Klein, T., Nabi, M.: Multimodal self-supervised learning for medical image analysis. In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds.) IPMI 2021. LNCS, vol. 12729, pp. 661–673. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78191-0_51

    Chapter  Google Scholar 

  27. Wang, H., Yurochkin, M., Sun, Y., Papailiopoulos, D., Khazaeni, Y.: Federated learning with matched averaging. arXiv preprint arXiv:2002.06440 (2020)

  28. Wei, C., Shen, K., Chen, Y., Ma, T.: Theoretical analysis of self-training with deep networks on unlabeled data. arXiv preprint arXiv:2010.03622 (2020)

  29. Wu, Y., Zeng, D., Wang, Z., Shi, Y., Hu, J.: Federated contrastive learning for volumetric medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 367–377. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_35

    Chapter  Google Scholar 

  30. Xia, Y., et al.: Auto-FedAvg: learnable federated averaging for multi-institutional medical image segmentation. arXiv preprint arXiv:2104.10195 (2021)

  31. Yang, D., et al.: Federated semi-supervised learning for COVID region segmentation in chest CT using multi-national data from China, Italy, Japan. Med. Image Anal. 70, 101992 (2021)

    Google Scholar 

  32. Yang, J., et al.: MedMNIST v2: a large-scale lightweight benchmark for 2D and 3D biomedical image classification. arXiv preprint arXiv:2110.14795 (2021)

  33. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: Concept and applications. ACM Trans. Intell. Syst. Technol. (TIST) 10(2), 1–19 (2019)

    Article  Google Scholar 

  34. Zhu, W., Liao, H., Li, W., Li, W., Luo, J.: Alleviating the incompatibility between cross entropy loss and episode training for few-shot skin disease classification. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 330–339. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_32

    Chapter  Google Scholar 

  35. Zhu, W., Luo, J., White, A.D.: Federated learning of molecular properties with graph neural networks in a heterogeneous setting. Patterns 100521 (2022)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by NIH 1P50NS108676-01, NIH 1R21DE030251-01 and NSF award 2050842.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 250 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, W., Luo, J. (2022). Federated Medical Image Analysis with Virtual Sample Synthesis. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13433. Springer, Cham. https://doi.org/10.1007/978-3-031-16437-8_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16437-8_70

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16436-1

  • Online ISBN: 978-3-031-16437-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics