Building Brains: Subvolume Recombination for Data Augmentation in Large Vessel Occlusion Detection | SpringerLink
Skip to main content

Building Brains: Subvolume Recombination for Data Augmentation in Large Vessel Occlusion Detection

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Ischemic strokes are often caused by large vessel occlusions (LVOs), which can be visualized and diagnosed with Computed Tomography Angiography scans. As time is brain, a fast, accurate and automated diagnosis of these scans is desirable. Human readers compare the left and right hemispheres in their assessment of strokes. A large training data set is required for a standard deep learning-based model to learn this strategy from data. As labeled medical data in this field is rare, other approaches need to be developed. To both include the prior knowledge of side comparison and increase the amount of training data, we propose an augmentation method that generates artificial training samples by recombining vessel tree segmentations of the hemispheres or hemisphere subregions from different patients. The subregions cover vessels commonly affected by LVOs, namely the internal carotid artery (ICA) and middle cerebral artery (MCA). In line with the augmentation scheme, we use a 3D-DenseNet fed with task-specific input, fostering a side-by-side comparison between the hemispheres. Furthermore, we propose an extension of that architecture to process the individual hemisphere subregions. All configurations predict the presence of an LVO, its side, and the affected subregion. We show the effect of recombination as an augmentation strategy in a 5-fold cross validated ablation study. We enhanced the AUC for patient-wise classification regarding the presence of an LVO of all investigated architectures. For one variant, the proposed method improved the AUC from 0.73 without augmentation to 0.89. The best configuration detects LVOs with an AUC of 0.91, LVOs in the ICA with an AUC of 0.96, and in the MCA with 0.91 while accurately predicting the affected side.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amukotuwa, S.A., Straka, M., Dehkharghani, S., Bammer, R.: Fast automatic detection of large vessel occlusions on CT angiography. Stroke 50(12), 3431–3438 (2019)

    Article  Google Scholar 

  2. Amukotuwa, S.A., et al.: Automated detection of intracranial large vessel occlusions on computed tomography angiography: a single center experience. Stroke 50(10), 2790–2798 (2019)

    Article  Google Scholar 

  3. Caplan, L.R.: Arterial occlusions: does size matter? J. Neurol. Neurosurg. Psychiatry 78(9), 916 (2007)

    Article  Google Scholar 

  4. Chefd’Hotel, C., Hermosillo, G., Faugeras, O.: Flows of diffeomorphisms for multimodal image registration. In: Proceedings IEEE International Symposium on Biomedical Imaging, pp. 753–756 (2002). https://doi.org/10.1109/ISBI.2002.1029367

  5. Hara, K., Kataoka, H., Satoh, Y.: Can spatiotemporal 3D CNNs retrace the history of 2D CNNs and imagenet? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6546–6555 (2018)

    Google Scholar 

  6. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4700–4708 (2017). https://doi.org/10.1109/CVPR.2017.243

  7. Kemmling, A., Wersching, H., Berger, K., Knecht, S., Groden, C., Nölte, I.: Decomposing the hounsfield unit. Clin. Neuroradiol. 22(1), 79–91 (2012). https://doi.org/10.1007/s00062-011-0123-0

    Article  Google Scholar 

  8. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization (2015)

    Google Scholar 

  9. Luijten, S.P., et al.: Diagnostic performance of an algorithm for automated large vessel occlusion detection on CT angiography. J. Neurointerventional Surg. 14(8), 794–798 (2021). https://doi.org/10.1136/neurintsurg-2021-017842

    Article  Google Scholar 

  10. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  11. Pérez-García, F., Sparks, R., Ourselin, S.: Torchio: a python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning. Comput. Methods Programs Biomed. 208, 106236 (2021). https://doi.org/10.1016/j.cmpb.2021.106236

    Article  Google Scholar 

  12. Stib, M.T., et al.: Detecting large vessel occlusion at multiphase CT angiography by using a deep convolutional neural network. Radiology 297(3), 640–649 (2020)

    Article  Google Scholar 

  13. Thamm, F., Jürgens, M., Ditt, H., Maier, A.: VirtualDSA++: automated segmentation, vessel labeling, occlusion detection and graph search on CT-angiography data. In: Kozlíková, B., Krone, M., Smit, N., Nieselt, K., Raidou, R.G. (eds.) Eurographics Workshop on Visual Computing for Biology and Medicine. The Eurographics Association (2020). https://doi.org/10.2312/vcbm.20201181

  14. Thamm, F., Taubmann, O., Jürgens, M., Ditt, H., Maier, A.: Detection of large vessel occlusions using deep learning by deforming vessel tree segmentations. In: Bildverarbeitung für die Medizin 2022. I, pp. 44–49. Springer, Wiesbaden (2022). https://doi.org/10.1007/978-3-658-36932-3_9

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Thamm .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 133 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thamm, F. et al. (2022). Building Brains: Subvolume Recombination for Data Augmentation in Large Vessel Occlusion Detection. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13433. Springer, Cham. https://doi.org/10.1007/978-3-031-16437-8_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16437-8_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16436-1

  • Online ISBN: 978-3-031-16437-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics