Abstract
The Web is characterized by user interaction on Online Social Networks, the exchange of content on a large scale, and the presentation of one’s own life on several digital channels using different media. Users strive to reach as many people as possible with their content while also distributing traffic across the various networks. To simplify this, there are Social Media Reference Landing Pages where users can bring together their numerous social media profiles. Our research project investigates the threat to users posed by the shared content, such as blackmailing or doxing. An important step is finding and merging different user profiles, primarily based on hints, similar user names, or links. In this paper, we show how Reference Landing Pages make it easier to create comprehensive Digital Twins, which we can use to compute and make tangible the risk of thoughtless sharing of information to users.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
See https://frame-for-business.de/?page_id=14485 (2022-03-14).
- 2.
Authority-Dependent Risk Identification and Analysis in online Networks.
- 3.
See https://pypi.org/project/beautifulsoup4/ (2022-03-14).
- 4.
See https://huggingface.co/flair/ner-english (2022-03-14).
- 5.
See https://github.com/derek73/python-nameparser (2022-03-14).
- 6.
See https://github.com/philipperemy/name-dataset (2022-03-14).
- 7.
See https://huggingface.co/sentence-transformers/all-mpnet-base-v2 (2022-03-14).
References
Agarwal, A., Toshniwal, D.: SmPFT: social media based profile fusion technique for data enrichment. Comput. Netw. 158, 123–131 (2019)
Ahmad, W., Ali, R.: User identification across multiple online social networks using cross link attribute and network relationship. J. Interdiscip. Math. 23 (2020). https://doi.org/10.1080/09720502.2020.1721713
Barricelli, B.R., Casiraghi, E., Fogli, D.: A survey on digital twin: definitions, characteristics, applications, and design implications. IEEE Access 7, 167653–167671 (2019). https://doi.org/10.1109/ACCESS.2019.2953499
Bäumer, F.S., Grote, N., Kersting, J., Geierhos, M.: Privacy matters: detecting nocuous patient data exposure in online physician reviews. In: Damaševičius, R., Mikašytė, V. (eds.) ICIST 2017. CCIS, vol. 756, pp. 77–89. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67642-5_7
Bäumer, F.S., Kersting, J., Orlikowski, M., Geierhos, M.: Towards a multi-stage approach to detect privacy breaches in physician reviews. In: SEMANTICS Posters & Demos (2018)
Bennacer, N., Nana Jipmo, C., Penta, A., Quercini, G.: Matching user profiles across social networks. In: Jarke, M., et al. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 424–438. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07881-6_29
Bettendorf, S.: Hilfreiche Programme. In: Instagram-Journalismus für die Praxis, pp. 97–101. Springer, Wiesbaden (2020). https://doi.org/10.1007/978-3-658-31484-2_14
Bäumer, F.S., Denisov, S., Su Lee, Y., Geierhos, M.: Towards authority-dependent risk identification and analysis in online networks. In: Halimi, A., Ayday, E. (eds.) Proceedings of the IST-190 Research Symposium (RSY) on AI, ML and BD for Hybrid Military Operations (AI4HMO), October 2021
Cai, C., Li, L., Chen, W., Zeng, D.D.: Capturing deep dynamic information for mapping users across social networks. In: 2019 IEEE International Conference on Intelligence and Security Informatics, ISI 2019, May 2019. https://doi.org/10.1109/ISI.2019.8823341
Data Portal, January 2022. https://datareportal.com/reports/digital-2022-global-overview-report
Goga, O., Lei, H., Parthasarathi, S.H.K., Friedland, G., Sommer, R., Teixeira, R.: Exploiting innocuous activity for correlating users across sites. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 447–458 (2013)
Halimi, A., Ayday, E.: Efficient quantification of profile matching risk in social networks using belief propagation. In: Chen, L., Li, N., Liang, K., Schneider, S. (eds.) ESORICS 2020. LNCS, vol. 12308, pp. 110–130. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58951-6_6
Kammakomati, M., Battula, S.V.: MergeURL: an effective URL merging and shortening service (2020)
Kasbekar, P., Potika, K., Pollett, C.: Find me if you can: aligning users in different social networks. In: Proceedings of the 2020 IEEE 6th International Conference on Big Data Computing Service and Applications, BigDataService 2020, August 2020, pp. 46–53. https://doi.org/10.1109/BigDataService49289.2020.00015
Li, Y., Ji, W., Gao, X., Deng, Y., Dong, W., Li, D.: Matching user accounts with spatio-temporal awareness across social networks. Inf. Sci. 570, 1–15 (2021)
Li, Y., Peng, Y., Zhang, Z., Yin, H., Xu, Q.: Matching user accounts across social networks based on username and display name. World Wide Web 22(3), 1075–1097 (2018). https://doi.org/10.1007/s11280-018-0571-4
Linktree: Linktr.ee: About (2022). https://linktr.ee/s/about/
Metzger, M.J.: Effects of site, vendor, and consumer characteristics on web site trust and disclosure. Commun. Res. 33(3), 155–179 (2006). https://doi.org/10.1177/0093650206287076
Müngen, A., Gündoğan, E., Kaya, M.: Identifying multiple social network accounts belonging to the same users. Soc. Netw. Anal. Min. 11, 29 (2021)
Sheehan, K.B., Hoy, M.G.: Dimensions of privacy concern among online consumers. J. Public Policy Mark. 19(1), 62–73 (2000). http://www.jstor.org/stable/30000488
Shoeibi, N., Shoeibi, N., Chamoso, P., AlizadehSani, Z., Corchado, J.: Similarity approximation of twitter profiles (2021)
Sokhin, T., Butakov, N., Nasonov, D.: User profiles matching for different social networks based on faces identification. Hybrid Artif. Intell. Syst. 551–562 (2019). https://doi.org/10.1007/978-3-030-29859-3_47. http://dx.doi.org/10.1007/978-3-030-29859-3_47
Soltani, R., Abhari, A.: Identity matching in social media platforms. In: 2013 International Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS), pp. 64–70 (2013)
Xing, L., Deng, K., Wu, H., Xie, P., Gao, J.: Behavioral habits-based user identification across social networks. Symmetry 11, 1134 (2019). https://doi.org/10.3390/sym11091134
Xing, L., Deng, K., Wu, H., Xie, P., Zhang, M., Wu, Q.: Exploiting two-level information entropy across social networks for user identification. Wirel. Commun. Mob. Comput. 2021, 1–15 (2021). https://doi.org/10.1155/2021/1082391
Acknowledgements
This research is funded by dtec.bw – Digitalization and Technology Research Center of the Bundeswehr.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Denisov, S., Bäumer, F.S. (2022). The Only Link You’ll Ever Need: How Social Media Reference Landing Pages Speed Up Profile Matching. In: Lopata, A., Gudonienė, D., Butkienė, R. (eds) Information and Software Technologies. ICIST 2022. Communications in Computer and Information Science, vol 1665. Springer, Cham. https://doi.org/10.1007/978-3-031-16302-9_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-16302-9_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16301-2
Online ISBN: 978-3-031-16302-9
eBook Packages: Computer ScienceComputer Science (R0)