Abstract
Non-interactive batch arguments for \(\textsf{NP}\) provide a way to amortize the cost of \(\textsf{NP}\) verification across multiple instances. They enable a prover to convince a verifier of multiple \(\textsf{NP}\) statements with communication much smaller than the total witness length and verification time much smaller than individually checking each instance.
In this work, we give the first construction of a non-interactive batch argument for \(\textsf{NP}\) from standard assumptions on groups with bilinear maps (specifically, from either the subgroup decision assumption in composite-order groups or from the \(k\)-\(\textsf{Lin}\) assumption in prime-order groups for any \(k \ge 1\)). Previously, batch arguments for \(\textsf{NP}\) were only known from \(\textsf{LWE}\), or a combination of multiple assumptions, or from non-standard/non-falsifiable assumptions. Moreover, our work introduces a new direct approach for batch verification and avoids heavy tools like correlation-intractable hash functions or probabilistically-checkable proofs common to previous approaches.
As corollaries to our main construction, we obtain the first publicly-verifiable non-interactive delegation scheme for RAM programs (i.e., a succinct non-interactive argument (SNARG) for \(\textsf{P}\)) with a CRS of sublinear size (in the running time of the RAM program), as well as the first aggregate signature scheme (supporting bounded aggregation) from standard assumptions on bilinear maps.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In the bilateral version of the \(k\)-\(\textsf{Lin}\) assumption, the challenge is encoded in both groups rather than one of the groups.
- 2.
- 3.
Technically, this is only required for the input wires corresponding to the witness.
- 4.
Our techniques extend naturally to support binary-valued gates that can compute arbitrary quadratic functions of their inputs; see the full version of this paper [WW22].
- 5.
This is different from the notion of “dual-mode” proof system often encountered in the setting of non-interactive zero-knowledge (NIZK) [GOS06, PS19, LPWW20]. There, the CRS can be sampled in two computationally indistinguishable modes: one mode ensures statistical soundness and the other ensures statistical zero knowledge.
- 6.
Our construction satisfies the stronger notion of semi-adaptive somewhere soundness [CJJ21b], where the adversary first commits to an index \(i^*\), but is allowed to choose the statements \((\textbf{x}_1, \ldots , \textbf{x}_m)\) after seeing the CRS. The adversary wins if the proof is valid but \(\textbf{x}_{i^*}\) is false. This notion is needed for the implications to delegation.
- 7.
While our BARG scheme can be based on the \(k\)-\(\textsf{Lin}\) assumption over bilinear groups for any \(k \ge 1\), existing constructions of somewhere statistically binding hash functions [OPWW15] rely on the \(\textsf{DDH}\) assumption. As such, our current instantiation is based on \(\textsf{SXDH}\). It seems plausible that the \(\textsf{DDH}\)-based construction of somewhere statistically binding hash functions can be extended to achieve hardness under the \(k\)-\(\textsf{Lin}\) assumption, but this is orthogonal to the primary focus of our work.
- 8.
Here, we allow the verification algorithm to take in a separate verification key \(\textsf{vk}\), which may be shorter than the full common reference string \(\textsf{crs}\). Note that the \(\textsf{vk}\) is assumed to be public (i.e., the CRS contains \(\textsf{vk}\) and possibly additional components used to construct proofs).
References
Ahn, J.H., Green, M., Hohenberger, S.: Synchronized aggregate signatures: new definitions, constructions and applications. In: ACM CCS (2010)
Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and post-quantum secure computational integrity. IACR Cryptol. ePrint Arch. 2018, 1–83 (2018)
Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_3
Bitansky, N., et al.: The hunting of the SNARK. J. Cryptol. 30(4), 989–1066 (2017)
Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resistance to succinct non-interactive arguments of knowledge, and back again. In: ITCS (2012)
Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_18
Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: On the existence of extractable one-way functions. In: STOC (2014)
Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_26
Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7_18
Brakerski, Z., Holmgren, J., Kalai, Y.T.: Non-interactive delegation and batch NP verification from standard computational assumptions. In: STOC (2017)
Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Lattice-based SNARGs and their application to more efficient obfuscation. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 247–277. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56617-7_9
Canetti, R., et al.: Fiat-Shamir: from practice to theory. In: STOC (2019)
Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_5
Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited (preliminary version). In: STOC (1998)
Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: preprocessing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 738–768. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_26
Choudhuri, A.R., Jain, A., Jin, Z.: Non-interactive batch arguments for NP from standard assumptions. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12828, pp. 394–423. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84259-8_14
Choudhuri, A.R., Jain, A., Jin, Z.: SNARGs for P from LWE. In: FOCS (2021)
Chiesa, A., Ojha, D., Spooner, N.: Fractal: post-quantum and transparent recursive proofs from holography. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 769–793. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_27
Damgård, I., Faust, S., Hazay, C.: Secure two-party computation with low communication. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 54–74. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_4
Freire, E.S.V., Hofheinz, D., Paterson, K.G., Striecks, C.: Programmable hash functions in the multilinear setting. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 513–530. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_28
Freeman, D.M.: Converting pairing-based cryptosystems from composite-order groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 44–61. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_3
Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12
Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_37
Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive proofs for muggles. In: STOC (2008)
Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_21
Gentry, C., Ramzan, Z.: Identity-based aggregate signatures. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 257–273. Springer, Heidelberg (2006). https://doi.org/10.1007/11745853_17
Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_19
Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_11
Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_24
Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable assumptions. In: STOC (2011)
González, A., Zacharakis, A.: Succinct publicly verifiable computation. In: TCC (2021)
Hulett, J., Jawale, R., Khurana, D., Srinivasan, A.: SNARGs for P from Sub-exponential DDH and QR. In: Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology – EUROCRYPT 2022. EUROCRYPT 2022. Lecture Notes in Computer Science, vol. 13276, pp. 520–549. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07085-3_18
Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5_31
Hohenberger, S., Koppula, V., Waters, B.: Universal signature aggregators. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 3–34. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_1
Hubácek, P., Wichs, D.: On the communication complexity of secure function evaluation with long output. In: ITCS (2015)
Hohenberger, S., Waters, B.: Synchronized aggregate signatures from the RSA assumption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 197–229. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_7
Jain, A., Jin, Z.: Non-interactive Zero Knowledge from Sub-exponential DDH. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 3–32. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_1
Jawale, R., Kalai, Y.T, Khurana, D., Zhang, R.Y.: SNARGs for bounded depth computations and PPAD hardness from sub-exponential LWE. In: STOC (2021)
Kalai, Y.T., Paneth, O., Yang, L.: How to delegate computations publicly. In: STOC (2019)
Kalai, Y.T., Raz, R., Rothblum, R.D.: Delegation for bounded space. In: STOC (2013)
Kalai, Y.T., Raz, R., Rothblum, R.D.: How to delegate computations: the power of no-signaling proofs. In: STOC (2014)
Kalai, Y.T., Vaikuntanathan, V., Zhang, R.Y.: Somewhere statistical soundness, post-quantum security, and SNARGs. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13042, pp. 330–368. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90459-3_12
Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for interactive proof systems. In: FOCS (1990)
Lipmaa, H.: Succinct non-interactive zero knowledge arguments from span programs and linear error-correcting codes. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 41–60. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7_3
Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential aggregate signatures from trapdoor permutations. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 74–90. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_5
Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate signatures and multisignatures without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_28
Lipmaa, H., Pavlyk, K.: Gentry-wichs is tight: a falsifiable non-adaptively sound SNARG. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13092, pp. 34–64. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92078-4_2
Libert, B., Passelègue, A., Wee, H., Wu, D.J.: New constructions of statistical NIZKs: Dual-Mode DV-NIZKs and more. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 410–441. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_14
Micali, S.: Computationally-sound proofs. In: Proceedings of the Annual European Summer Meeting of the Association of Symbolic Logic (1995)
Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_6
Okamoto, T., Pietrzak, K., Waters, B., Wichs, D.: New realizations of somewhere statistically binding hashing and positional accumulators. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 121–145. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_6
Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifiable computation. In: IEEE Symposium on Security and Privacy (2013)
Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain) learning with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 89–114. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_4
Rothblum, G.N., Rothblum, R.D.: Batch verification and proofs of proximity with polylog overhead. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12551, pp. 108–138. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-2_5
Reingold, O., Rothblum, G.N., Rothblum, R.D.: Constant-round interactive proofs for delegating computation. In: STOC (2016)
Reingold, O., Rothblum, G.N., Rothblum, R.D.: Efficient batch verification for UP. In: CCC (2018)
Rückert, M., Schröder, D.: Aggregate and verifiably encrypted signatures from multilinear maps without random oracles. In: Park, J.H., Chen, H.-H., Atiquzzaman, M., Lee, C., Kim, T., Yeo, S.-S. (eds.) ISA 2009. LNCS, vol. 5576, pp. 750–759. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02617-1_76
Setty, S.: Spartan: efficient and general-purpose zkSNARKs without trusted setup. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 704–737. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_25
Shamir, A.: IP=PSPACE. In: FOCS (1990)
Shacham, H.: A Cramer-Shoup encryption scheme from the linear assumption and from progressively weaker linear variants. IACR Cryptol. ePrint Arch. (2007)
Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: STOC (2014)
Wichs, D.: Personal communication (2022)
Waters, B., Wu, D.J.: Batch arguments for NP and more from standard bilinear group assumptions. IACR Cryptol. ePrint Arch. (2022)
Acknowledgments
B. Waters is supported by NSF CNS-1908611, a Simons Investigator award, and the Packard Foundation Fellowship. D. J. Wu is supported by NSF CNS-1917414, CNS-2045180, a Microsoft Research Faculty Fellowship, and a Google Research Scholar award.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 International Association for Cryptologic Research
About this paper
Cite this paper
Waters, B., Wu, D.J. (2022). Batch Arguments for \(\textsf{NP}\) and More from Standard Bilinear Group Assumptions. In: Dodis, Y., Shrimpton, T. (eds) Advances in Cryptology – CRYPTO 2022. CRYPTO 2022. Lecture Notes in Computer Science, vol 13508. Springer, Cham. https://doi.org/10.1007/978-3-031-15979-4_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-15979-4_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-15978-7
Online ISBN: 978-3-031-15979-4
eBook Packages: Computer ScienceComputer Science (R0)