AFS: Attention Using First and Second Order Information to Enrich Features | SpringerLink
Skip to main content

AFS: Attention Using First and Second Order Information to Enrich Features

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2022 (ICANN 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13532))

Included in the following conference series:

  • 2050 Accesses

Abstract

Convolutional Neural Network (CNN) is the basis of many computer vision tasks. In order to depict complex boundaries in visual tasks, it is essential to fully explore the feature distribution to realize the potential of CNN. However, most of the current research focuses on the design of deeper architectures, and rarely explores high-level feature statistics. To solve this problem, we propose a simple and effective neural network attention insertion module, named Attention Module using First and Second order information fusion (AFS). Our method combines the first-order pooling and the second-order pooling, corresponding to the two independent dimensions of space and channel respectively, and verifies the effectiveness of our AFS through the two connection ways. The feature map outputed by the middle convolutional layer infers the attention map in turn along the channel and space, and then multiplies the attention map with the input feature map for adaptive feature refinement. Our AFS can be integrated with any feedforward CNNs and can be trained end-to-end with negligible overhead. We have conducted a large number of experiments on CIFAR-10 and CIFAR-100, and the experimental results show that our AFS module significantly improves the classification and detection performance on different models.

Supported in part by the Natural Science Foundation of Chongqing under Grant cstc2020jcyj-msxmX0057.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: CVPR, pp. 7263–7271 (2017)

    Google Scholar 

  2. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)

    Google Scholar 

  3. Wang, X., Girshick, R., Gupta, A., et al.: Non-local neural networks. In: CVPR, pp. 7794–7803 (2018)

    Google Scholar 

  4. LeCun, Y., Bottou, L., Bengio, Y., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  5. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  6. Szegedy, C., Liu, W., Jia, Y., et al.: Going deeper with convolutions. In: CVPR, pp. 1–9 (2015)

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  8. Ionescu, C., Vantzos, O., Sminchisescu, C.: Matrix backpropagation for deep networks with structured layers. In: ICCV, pp. 2965–2973 (2015)

    Google Scholar 

  9. Wang, Y., Xie, L., Liu, C., et al.: SORT: second-order response transform for visual recognition. In: ICCV, pp. 1359–1368 (2017)

    Google Scholar 

  10. Li, P., Xie, J., Wang, Q., Zuo, W.: Is second-order information helpful for large-scale visual recognition? In: ICCV, pp. 2070–2078 (2017)

    Google Scholar 

  11. Gregor, K., Danihelka, I., Graves, A., et al.: DRAW: a recurrent neural network for image generation. In: ICML, pp. 1462–1471. PMLR (2015)

    Google Scholar 

  12. Jaderberg, M., Simonyan, K., Zisserman, A.: Spatial transformer networks. In: NIPS 28 (2015)

    Google Scholar 

  13. Xu, K., Ba, J., Kiros, R., et al.: Show, attend and tell: neural image caption generation with visual attention. In: ICML, pp. 2048–2057. PMLR (2015)

    Google Scholar 

  14. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR, pp. 7132–7141 (2018)

    Google Scholar 

  15. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE TPAMI 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  16. Rensink, R.A.: The dynamic representation of scenes. Vis. Cogn. 7(1–3), 17–42 (2000)

    Article  Google Scholar 

  17. Corbetta, M., Shulman, G.L.: Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3(3), 201–215 (2002)

    Article  Google Scholar 

  18. Larochelle, H., Hinton, G.E.: Learning to combine foveal glimpses with a third-order Boltzmann machine. In: NIPS (2010)

    Google Scholar 

  19. Mnih, V., Heess, N., Graves, A., et al.: Recurrent models of visual attention. In: NIPS 27 (2014)

    Google Scholar 

  20. Chen, L., Zhang, H., Xiao, J., et al. : SCA-CNN: spatial and channel-wise attention in convolutional networks for image captioning. In: CVPR, pp. 5659–5667 (2017)

    Google Scholar 

  21. Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need. In: NIPS 30 (2017)

    Google Scholar 

  22. Li, P., Wang, Q., Zeng, H., et al.: Local log-Euclidean multivariate Gaussian descriptor and its application to image classification. IEEE TAPMI 39(4), 803–817 (2016)

    Article  Google Scholar 

  23. Wang, Q., Li, P., Zuo, W., et al.: RAID-G: robust estimation of approximate infinite dimensional Gaussian with application to material recognition. In: CVPR, pp. 4433–4441 (2016)

    Google Scholar 

  24. Cui, Y., Zhou, F., Wang, J., et al.: Kernel pooling for convolutional neural networks. In: CVPR (2017)

    Google Scholar 

  25. Li, P., Xie, J., Wang, Q., et al.: Towards faster training of global covariance pooling networks by iterative matrix square root normalization. In: CVPR, pp. 947–955 (2018)

    Google Scholar 

  26. Xiao, H., Feng, J., Lin, G., et al.: MoNet: deep motion exploitation for video object segmentation. In: CVPR, pp. 1140–1148 (2018)

    Google Scholar 

  27. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Technical report, Citeseer (2009)

    Google Scholar 

  28. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  29. Pytorch. http://pytorch.org/

  30. Cui, Y., Zhou, F., Wang, J., et al.: Kernel pooling for convolutional neural networks. In: CVPR, pp. 2921–2930 (2017)

    Google Scholar 

  31. Zagoruyko, S., Komodakis, N.: Wide residual networks. arXiv preprint arXiv:1605.07146 (2016)

  32. Howard, A.G., Zhu, M., Chen, B., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiwei Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zuo, Y., Lv, J., Wang, H. (2022). AFS: Attention Using First and Second Order Information to Enrich Features. In: Pimenidis, E., Angelov, P., Jayne, C., Papaleonidas, A., Aydin, M. (eds) Artificial Neural Networks and Machine Learning – ICANN 2022. ICANN 2022. Lecture Notes in Computer Science, vol 13532. Springer, Cham. https://doi.org/10.1007/978-3-031-15937-4_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15937-4_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15936-7

  • Online ISBN: 978-3-031-15937-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics