A Logic of “Black Box” Classifier Systems | SpringerLink
Skip to main content

A Logic of “Black Box” Classifier Systems

  • Conference paper
  • First Online:
Logic, Language, Information, and Computation (WoLLIC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13468))

  • 547 Accesses

Abstract

Binary classifiers are traditionally studied by propositional logic (\(\textsf{PL}\)). \(\textsf{PL}\) can only represent them as white boxes, under the assumption that the underlying Boolean function is fully known. Binary classifiers used in practical applications and trained by machine learning are however opaque. They are usually described as black boxes. In this paper, we provide a product modal logic called PLC (Product modal Logic for binary input Classifier) in which the notion of “black box” is interpreted as the uncertainty over a set of classifiers. We give results about axiomatics and complexity of satisfiability checking for our logic. Moreover, we present a dynamic extension in which the process of acquiring new information about the actual classifier can be represented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Notice that p denotes an input variable, while x is an output value rather than the output variable, which makes sense of the symbolic difference between p and \(\textsf{t}({x})\).

  2. 2.

    In the real world, partial knowledge may come from the data set as well as from the training process. For example, through learning, we may acquire knowledge that certain input features behave monotonically [26].

  3. 3.

    It has many names in literature: PI explanation [23], sufficient reason [6]. We adopt the one from [13] for its nice correspondence to contrastive explanation in [12].

References

  1. Amershi, S., Cakmak, M., Knox, W., Kulesza, T.: Power to the people: the role of humans in interactive machine learning. AI Mag. 35(4), 105–120 (2014)

    Google Scholar 

  2. Audemard, G., Bellart, S., Bounia, L., Koriche, F., Lagniez, J.M., Marquis, P.: On the computational intelligibility of boolean classifiers. In: Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning, vol. 18, pp. 74–86 (2021)

    Google Scholar 

  3. Baltag, A., van Benthem, J.: A simple logic of functional dependence. J. Philos. Log. 50(5), 939–1005 (2021). https://doi.org/10.1007/s10992-020-09588-z

    Article  Google Scholar 

  4. Bezhanishvili, N., Hodkinson, I.M.: All normal extensions of S5-squared are finitely axiomatizable. Stud. Logica. 78(3), 443–457 (2004)

    Article  Google Scholar 

  5. Bezhanishvili, N., Marx, M.: All proper normal extensions of S5-square have the polynomial size model property. Stud. Logica. 73(3), 367–382 (2003). https://doi.org/10.1023/A:1023383112908

    Article  Google Scholar 

  6. Darwiche, A., Hirth, A.: On the reasons behind decisions. In: ECAI 2020–24th European Conference on Artificial Intelligence. Frontiers in Artificial Intelligence and Applications, vol. 325, pp. 712–720. IOS Press (2020)

    Google Scholar 

  7. van Ditmarsch, H., van Der Hoek, W., Kooi, B.: Dynamic Epistemic Logic, Synthese Library, vol. 337 Springer (2007). https://doi.org/10.1007/978-1-4020-5839-4

  8. Gabbay, D.M., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-dimensional modal logics: theory and applications. Elsevier (2003)

    Google Scholar 

  9. Grossi, D., Lorini, E., Schwarzentruber, F.: The ceteris paribus structure of logics of game forms. J. Artif. Intell. Res. 53, 91–126 (2015)

    Article  Google Scholar 

  10. Halpern, J.Y.: The effect of bounding the number of primitive propositions and the depth of nesting on the complexity of modal logic. Artif. Intell. 75(2), 361–372 (1995)

    Article  Google Scholar 

  11. Hempel, C.G., Oppenheim, P.: Studies in the logic of explanation. Philos. sci. 15(2), 135–175 (1948)

    Article  Google Scholar 

  12. Ignatiev, A., Narodytska, N., Asher, N., Marques-Silva, J.: From contrastive to abductive explanations and back again. In: Baldoni, M., Bandini, S. (eds.) AIxIA 2020. LNCS (LNAI), vol. 12414, pp. 335–355. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77091-4_21

    Chapter  Google Scholar 

  13. Ignatiev, A., Narodytska, N., Marques-Silva, J.: Abduction-based explanations for machine learning models. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1511–1519 (2019)

    Google Scholar 

  14. Kment, B.: Counterfactuals and explanation. Mind 115(458), 261–310 (2006)

    Article  Google Scholar 

  15. Liu, X., Lorini, E.: A logic for binary classifiers and their explanation. In: Baroni, P., Benzmüller, C., Wáng, Y.N. (eds.) CLAR 2021. LNCS (LNAI), vol. 13040, pp. 302–321. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89391-0_17

    Chapter  Google Scholar 

  16. Lundberg, S., Lee, S.I.: A unified approach to interpreting model predictions. arXiv preprint arXiv:1705.07874 (2017)

  17. Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2019)

    Article  Google Scholar 

  18. Molnar, C.: Interpretable Machine Learning. Lulu. com (2020)

    Google Scholar 

  19. Plaza, J.: Logics of public communications. Synthese 158(2), 165–179 (2007). https://doi.org/10.1007/s11229-007-9168-7

    Article  Google Scholar 

  20. Quine, W.V.: A way to simplify truth functions. Am. Math. Mon. 62(9), 627–631 (1955)

    Article  Google Scholar 

  21. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you? Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

    Google Scholar 

  22. Ribeiro, M.T., Singh, S., Guestrin, C.: Anchors: high-precision model-agnostic explanations. In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18), vol. 32 (2018)

    Google Scholar 

  23. Shih, A., Choi, A., Darwiche, A.: Formal verification of bayesian network classifiers. In: International Conference on Probabilistic Graphical Models, pp. 427–438. PMLR (2018)

    Google Scholar 

  24. Walton, D.: A new dialectical theory of explanation. Philos. Explor. 7(1), 71–89 (2004)

    Article  Google Scholar 

  25. Yang, F., Väänänen, J.: Propositional logics of dependence. Ann. Pure Appl. Logic 167(7), 557–589 (2016)

    Article  Google Scholar 

  26. You, S., Ding, D., Canini, K., Pfeifer, J., Gupta, M.: Deep lattice networks and partial monotonic functions. Advances in neural information processing systems 30 (2017)

    Google Scholar 

Download references

Acknowledgments

Support from the ANR-3IA Artificial and Natural Intelligence Toulouse Institute (ANITI) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinghan Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, X., Lorini, E. (2022). A Logic of “Black Box” Classifier Systems. In: Ciabattoni, A., Pimentel, E., de Queiroz, R.J.G.B. (eds) Logic, Language, Information, and Computation. WoLLIC 2022. Lecture Notes in Computer Science, vol 13468. Springer, Cham. https://doi.org/10.1007/978-3-031-15298-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15298-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15297-9

  • Online ISBN: 978-3-031-15298-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics