A Memetic Algorithm Based on Adaptive Simulated Annealing for Community Detection | SpringerLink
Skip to main content

A Memetic Algorithm Based on Adaptive Simulated Annealing for Community Detection

  • Conference paper
  • First Online:
Intelligence Science IV (ICIS 2022)

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 659))

Included in the following conference series:

Abstract

The application of community detection (community discovery) has been widely used in various fields for several years. To improve the algorithm accuracy, we proposed a memetic algorithm based on an adaptive simulated annealing local search (MA-ASA). Segmented label propagation (STLP) is used for initialization and variation operations. A hierarchical idea is adopted to form an initial cluster center during initialization, and random competition is used to select the next generation of solutions. Instead of using fixed probabilities in each crossover and variation operation, we used quality differences to switch to adaptive probabilities in simulated annealing (SA) for local search to accelerate convergence. The algorithm was extensively tested and experimented with 11 artificial and 4 real networks. Compared with other 10 algorithms, the results showed that MA-ASA performs well and is highly competitive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 17159
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 17159
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Latora, V., Nicosia, V., Russo, G.: Complex Networks: Principles, Methods and Applications, 1st edn. Cambridge University Press, UK (2017)

    Google Scholar 

  2. Wasserman, S., Faust, K.: Social Network Analysis, p. 825. Cambridge University Press (25 November 1994)

    Google Scholar 

  3. Li, Q., Zhong, J., Li, Q., Cao, Z., Wang, C.: Enhancing network embedding with implicit clustering. In: Li, G., Yang, J., Gama, J., Natwichai, J., Tong, Y. (eds.) Database Systems for Advanced Applications: 24th International Conference, DASFAA 2019, Chiang Mai, Thailand, April 22–25, 2019, Proceedings, Part I, pp. 452–467. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-18576-3_27

    Chapter  Google Scholar 

  4. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004)

    Article  Google Scholar 

  5. Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69(6), 066133 (2004)

    Article  Google Scholar 

  6. Gong, M., Fu, B., Jiao, L., Du, H.: Memetic algorithm for community detection in networks. Phys. Rev. E 84, 056101 (2011)

    Article  Google Scholar 

  7. Gong, M., Cai, Q., Li, Y., Ma, J.: An improved memetic algorithm for community detection in complex networks. In: 2012 IEEE Congress on Evolutionary Computation (CEC) (2012)

    Google Scholar 

  8. Sun, X., Sun, Y., Cheng, S., Bian, K., Liu, Z.: Population learning based memetic algorithm for community detection in complex networks. In: Tan, Y., Shi, Y., Zomaya, A., Yan, H., Cai, J. (eds.) DMBD 2021. CCIS, vol. 1454, pp. 275–288. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-7502-7_29

    Chapter  Google Scholar 

  9. Bian, K., Sun, Y., Cheng, S., Liu, Z., Sun, X.: Adaptive methods of differential evolution multi-objective optimization algorithm based on decomposition. In: Zhang, H., Yang, Z., Zhang, Z., Wu, Z., Hao, T. (eds.) NCAA 2021. CCIS, vol. 1449, pp. 458–472. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-5188-5_33

    Chapter  Google Scholar 

  10. Sun, Y., Bian, K., Liu, Z., Sun, X., Yao, R.: Adaptive strategies based on differential evolutionary algorithm for many-objective optimization. Discrete Dyn. Nat. Soc. 2021, 1–17 (2021)

    MATH  Google Scholar 

  11. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. U.S.A. 99(12), 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33(4), 452–473 (1977)

    Article  Google Scholar 

  13. Lusseau, D., Schneider, K., Boisseau, O.J.: The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations. Behav. Ecol. Sociobiol. 54(4), 396–405 (2003)

    Article  Google Scholar 

  14. Gleiser, P., Danon, L.: Community structure in jazz. Adv. Complex Syst. 6(4), 565 (2003)

    Article  Google Scholar 

  15. Gong, M., Cai, Q., Chen, X., Ma, L.: Complex network clustering by multiobjective discrete particle swarm optimization based on decomposition. IEEE Trans. Evol. Comput. 18(1), 82–97 (2014)

    Article  Google Scholar 

  16. Pizzuti, C.: A multiobjective genetic algorithm to find communities in complex networks. IEEE Trans. Evol. Comput. 16(3), 418–430 (2012)

    Article  Google Scholar 

  17. Gong, M., Ma, L., Zhang, Q., Jiao, L.: Community detection in networks by using multiobjective evolutionary algorithm with decomposition. Phys. A 391(15), 4050–4060 (2012)

    Article  Google Scholar 

  18. Shi, C., Yan, Z., Cai, Y., Wu, B.: Multi-objective community detection in complex networks. Appl. Soft Comput. 12(2), 850–859 (2012)

    Article  Google Scholar 

  19. Pizzuti, C.: GA-Net: a genetic algorithm for community detection in social networks. Proc. Parallel Probl. Solving Nat. 5199, 1081–1090 (2008)

    Google Scholar 

  20. Liu, Z., Sun, Y., Cheng, S., Sun, X., Bian, K., Yao, R.: A node influence based memetic algorithm for community detection in complex networks. In: Pan, L., Cui, Z., Cai, J., Li, L. (eds.) Bio-inspired Computing: Theories and Applications, BIC-TA 2021. Communications in Computer and Information Science, vol. 1565. Springer, Singapore (2022). https://doi.org/10.1007/978-981-19-1256-6_16

  21. Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theor. Exp. 2008(10), P10008 (2008)

    Article  MATH  Google Scholar 

  22. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70(6), 066111 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61703256, 61806119), Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2022JM-381, 2017JQ6070) and the Fundamental Research Funds for the Central Universities (Program No. GK201803020, GK201603014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifei Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, J. et al. (2022). A Memetic Algorithm Based on Adaptive Simulated Annealing for Community Detection. In: Shi, Z., Jin, Y., Zhang, X. (eds) Intelligence Science IV. ICIS 2022. IFIP Advances in Information and Communication Technology, vol 659. Springer, Cham. https://doi.org/10.1007/978-3-031-14903-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14903-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14902-3

  • Online ISBN: 978-3-031-14903-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics