Abstract
We study the \((1,\lambda )\)-EA with mutation rate c/n for \(c\le 1\), where the population size is adaptively controlled with the \((1:s+1)\)-success rule. Recently, Hevia Fajardo and Sudholt have shown that this setup with \(c=1\) is efficient on OneMax for \(s<1\), but inefficient if \(s \ge 18\). Surprisingly, the hardest part is not close to the optimum, but rather at linear distance. We show that this behavior is not specific to OneMax. If s is small, then the algorithm is efficient on all monotone functions, and if s is large, then it needs superpolynomial time on all monotone functions. For small \(s\) and \(c<1\) we show a O(n) upper bound for the number of generations and \(O(n\log n)\) for the number of function evaluations; for small \(s\) and \(c=1\) we show the optimum is reached in \(O(n\log n)\) generations and \(O(n^2\log \log n)\) evaluations. We also show formally that optimization is always fast, regardless of s, if the algorithm starts in proximity of the optimum. All results also hold in a dynamic environment where the fitness function changes in each generation.
Extended Abstract. The proofs and further details are available on arxiv [32].
M. Kaufmann—Supported by the Swiss National Science Foundation [grant number 192079].
X. Zou—Supported by the Swiss National Science Foundation [grant number CR-SII5_173721].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aleti, A., Moser, I.: A systematic literature review of adaptive parameter control methods for evolutionary algorithms. ACM Comput. Surv. (CSUR) 49(3), 1–35 (2016)
Antipov, D., Doerr, B., Yang, Q.: The efficiency threshold for the offspring population size of the \((\mu , \lambda )\) EA. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 1461–1469 (2019)
Auger, A.: Benchmarking the (1+ 1) evolution strategy with one-fifth success rule on the BBOB-2009 function testbed. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 2447–2452 (2009)
Badkobeh, G., Lehre, P.K., Sudholt, D.: Unbiased black-box complexity of parallel search. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 892–901. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10762-2_88
Böttcher, S., Doerr, B., Neumann, F.: Optimal Fixed and adaptive mutation rates for the leadingones problem. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 1–10. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15844-5_1
Case, B., Lehre, P.K.: Self-adaptation in nonelitist evolutionary algorithms on discrete problems with unknown structure. IEEE Trans. Evol. Comput. 24(4), 650–663 (2020)
Colin, S., Doerr, B., Férey, G.: Monotonic functions in EC: anything but monotone! In: Genetic and Evolutionary Computation Conference (GECCO), pp. 753–760 (2014)
Devroye, L.: The compound random search. Ph.D. dissertation, Purdue Univ., West Lafayette, IN (1972)
Doerr, B., Doerr, C.: Optimal static and self-adjusting parameter choices for the \((1+(\lambda,\lambda ))\) Genetic Algorithm. Algorithmica 80(5), 1658–1709 (2018)
Doerr, B., Doerr, C.: Theory of Parameter control for discrete black-box optimization: provable performance gains through dynamic parameter choices. In: Theory of Evolutionary Computation. NCS, pp. 271–321. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29414-4_6
Doerr, B., Doerr, C., Ebel, F.: From black-box complexity to designing new genetic algorithms. Theoret. Comput. Sci. 567, 87–104 (2015)
Doerr, B., Doerr, C., Kötzing, T.: Provably optimal self-adjusting step sizes for multi-valued decision variables. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 782–791. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6_73
Doerr, B., Doerr, C., Kötzing, T.: Static and self-adjusting mutation strengths for multi-valued decision variables. Algorithmica 80(5), 1732–1768 (2018)
Doerr, B., Doerr, C., Lengler, J.: Self-adjusting mutation rates with provably optimal success rules. Algorithmica 83(10), 3108–3147 (2021)
Doerr, B., Doerr, C., Yang, J.: Optimal parameter choices via precise black-box analysis. Theoret. Comput. Sci. 801, 1–34 (2020)
Doerr, B., Gießen, C., Witt, C., Yang, J.: The \((1+\lambda )\) evolutionary algorithm with self-adjusting mutation rate. Algorithmica 81(2), 593–631 (2019)
Doerr, B., Jansen, T., Sudholt, D., Winzen, C., Zarges, C.: Optimizing monotone functions can be difficult. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 42–51. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15844-5_5
Doerr, B., Jansen, T., Sudholt, D., Winzen, C., Zarges, C.: Mutation rate matters even when optimizing monotonic functions. Evol. Comput. 21(1), 1–27 (2013)
Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorithmica 64, 673–697 (2012)
Doerr, B., Künnemann, M.: Optimizing linear functions with the (1+ \(\lambda \)) evolutionary algorithm-different asymptotic runtimes for different instances. Theoret. Comput. Sci. 561, 3–23 (2015)
Doerr, B., Lissovoi, A., Oliveto, P.S., Warwicker, J.A.: On the runtime analysis of selection hyper-heuristics with adaptive learning periods. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 1015–1022 (2018)
Doerr, B., Witt, C., Yang, J.: Runtime analysis for self-adaptive mutation rates. Algorithmica 83(4), 1012–1053 (2021)
Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Trans. Evol. Comput. 3, 124–141 (1999)
Grimmett, G.R., et al.: Percolation, vol. 321. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-662-03981-6
Hevia Fajardo, M.A., Sudholt, D.: On the choice of the parameter control mechanism in the (1+(\(\lambda \), \(\lambda \))) genetic algorithm. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 832–840 (2020)
Hevia Fajardo, M.A., Sudholt, D.: Self-adjusting population sizes for non-elitist evolutionary algorithms: why success rates matter. arXiv preprint arXiv:2104.05624 (2021)
Hevia Fajardo, M.A., Sudholt, D.: Self-adjusting population sizes for non-elitist evolutionary algorithms: why success rates matter. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 1151–1159 (2021)
Jagerskupper, J., Storch, T.: When the plus strategy outperforms the comma strategy and when not. In: 2007 IEEE Symposium on Foundations of Computational Intelligence, pp. 25–32. IEEE (2007)
Jansen, T.: On the brittleness of evolutionary algorithms. In: Stephens, C.R., Toussaint, M., Whitley, D., Stadler, P.F. (eds.) FOGA 2007. LNCS, vol. 4436, pp. 54–69. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73482-6_4
Karafotias, G., Hoogendoorn, M., Eiben, Á.E.: Parameter control in evolutionary algorithms: trends and challenges. IEEE Trans. Evol. Comput. 19(2), 167–187 (2014)
Kaufmann, M., Larcher, M., Lengler, J., Zou, X.: OneMax is not the easiest function for fitness improvements (2022). https://arxiv.org/abs/2204.07017
Kaufmann, M., Larcher, M., Lengler, J., Zou, X.: Self-adjusting population sizes for the \((1, \lambda )\)-EA on monotone functions (2022). https://arxiv.org/abs/2204.00531
Kern, S., Müller, S.D., Hansen, N., Büche, D., Ocenasek, J., Koumoutsakos, P.: Learning probability distributions in continuous evolutionary algorithms-a comparative review. Nat. Comput. 3(1), 77–112 (2004)
Kötzing, T.: Concentration of first hitting times under additive drift. Algorithmica 75(3), 490–506 (2016)
Lässig, J., Sudholt, D.: Adaptive population models for offspring populations and parallel evolutionary algorithms. In: Foundations of Genetic Algorithms (FOGA), pp. 181–192 (2011)
Lehre, P.K., Witt, C.: Black-box search by unbiased variation. Algorithmica 64, 623–642 (2012)
Lengler, J.: A general dichotomy of evolutionary algorithms on monotone functions. IEEE Trans. Evol. Comput. 24(6), 995–1009 (2019)
Lengler, J.: Drift analysis. In: Theory of Evolutionary Computation. NCS, pp. 89–131. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29414-4_2
Lengler, J., Martinsson, A., Steger, A.: When does hillclimbing fail on monotone functions: an entropy compression argument. In: Analytic Algorithmics and Combinatorics (ANALCO), pp. 94–102. SIAM (2019)
Lengler, J., Meier, J.: Large population sizes and crossover help in dynamic environments. In: Bäck, T., et al. (eds.) PPSN 2020. LNCS, vol. 12269, pp. 610–622. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58112-1_42
Lengler, J., Riedi, S.: Runtime analysis of the \((\mu + 1)\)-EA on the dynamic BinVal function. In: Zarges, C., Verel, S. (eds.) EvoCOP 2021. LNCS, vol. 12692, pp. 84–99. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72904-2_6
Lengler, J., Schaller, U.: The \((1+1)\)-EA on noisy linear functions with random positive weights. In: Symposium Series on Computational Intelligence (SSCI), pp. 712–719. IEEE (2018)
Lengler, J., Steger, A.: Drift analysis and evolutionary algorithms revisited. Comb. Probab. Comput. 27(4), 643–666 (2018)
Lengler, J., Zou, X.: Exponential slowdown for larger populations: the \((\mu + 1)\)-EA on monotone functions. Theoret. Comput. Sci. 875, 28–51 (2021)
Lissovoi, A., Oliveto, P., Warwicker, J.A.: How the duration of the learning period affects the performance of random gradient selection hyper-heuristics. In: AAAI Conference on Artificial Intelligence (AAAI), vol. 34, no. 3, pp. 2376–2383 (2020)
Lissovoi, A., Oliveto, P.S., Warwicker, J.A.: On the time complexity of algorithm selection hyper-heuristics for multimodal optimisation. In: AAAI Conference on Artificial Intelligence (AAAI), vol. 33, no. 1, pp. 2322–2329 (2019)
Lissovoi, A., Oliveto, P.S., Warwicker, J.A.: Simple hyper-heuristics control the neighbourhood size of randomised local search optimally for LeadingOnes. Evol. Comput. 28(3), 437–461 (2020)
Mambrini, A., Sudholt, D.: Design and analysis of schemes for adapting migration intervals in parallel evolutionary algorithms. Evol. Comput. 23(4), 559–582 (2015)
Rajabi, A., Witt, C.: Evolutionary algorithms with self-adjusting asymmetric mutation. In: Bäck, T., et al. (eds.) PPSN 2020. LNCS, vol. 12269, pp. 664–677. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58112-1_46
Rajabi, A., Witt, C.: Self-adjusting evolutionary algorithms for multimodal optimization. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 1314–1322 (2020)
Rechenberg, I.: Evolutionsstrategien. In: Schneider, B., Ranft, U. (eds.) Simulationsmethoden in der Medizin und Biologie, pp. 83–114. Springer, Heidelberg (1978). https://doi.org/10.1007/978-3-642-81283-5_8
Rodionova, A., Antonov, K., Buzdalova, A., Doerr, C.: Offspring population size matters when comparing evolutionary algorithms with self-adjusting mutation rates. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 855–863 (2019)
Rowe, J.E., Sudholt, D.: The choice of the offspring population size in the (1, \(\lambda \)) evolutionary algorithm. Theoret. Comput. Sci. 545, 20–38 (2014)
Schumer, M., Steiglitz, K.: Adaptive step size random search. IEEE Trans. Autom. Control 13(3), 270–276 (1968)
Acknowledgements
We thank Dirk Sudholt for helpful discussions during the Dagstuhl seminar 22081 “Theory of Randomized Optimization Heuristics”. We also thank the reviewers for their helpful comments and suggestions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kaufmann, M., Larcher, M., Lengler, J., Zou, X. (2022). Self-adjusting Population Sizes for the \((1, \lambda )\)-EA on Monotone Functions. In: Rudolph, G., Kononova, A.V., Aguirre, H., Kerschke, P., Ochoa, G., Tušar, T. (eds) Parallel Problem Solving from Nature – PPSN XVII. PPSN 2022. Lecture Notes in Computer Science, vol 13399. Springer, Cham. https://doi.org/10.1007/978-3-031-14721-0_40
Download citation
DOI: https://doi.org/10.1007/978-3-031-14721-0_40
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-14720-3
Online ISBN: 978-3-031-14721-0
eBook Packages: Computer ScienceComputer Science (R0)