Abstract
Detecting anomalies in images is a task with several relevant real-world applications, e.g. industrial inspection. Building on the existing RIAD (Reconstruction by Inpainting for visual Anomaly Detection) framework, we introduce an attention-based component to improve the model performance. Furthermore we propose a different approach to image masking which leverages the selection of multiple random patches at a single scale in the original images. Through the provided experimental results we show how the novelties introduced by this work consistently improve the performance of the baseline approach over the various classes of the heterogeneous MVTec benchmark dataset across all the metrics considered.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abati, D., Porrello, A., Calderara, S., Cucchiara, R.: Latent space autoregression for novelty detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 481–490 (2019)
Akcay, S., Atapour-Abarghouei, A., Breckon, T.P.: GANomaly: semi-supervised anomaly detection via adversarial training. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11363, pp. 622–637. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20893-6_39
Bergmann, P., Batzner, K., Fauser, M., Sattlegger, D., Steger, C.: The MVTEC anomaly detection dataset: a comprehensive real-world dataset for unsupervised anomaly detection. Int. J. Comput. Vis. 129(4), 1038–1059 (2021)
Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad-a comprehensive real-world dataset for unsupervised anomaly detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9592–9600 (2019)
Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Uninformed students: student-teacher anomaly detection with discriminative latent embeddings. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4183–4192 (2020)
Bergmann, P., Löwe, S., Fauser, M., Sattlegger, D., Steger, C.: Improving unsupervised defect segmentation by applying structural similarity to autoencoders. In: International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (2019)
Buda, M., Maki, A., Mazurowski, M.A.: A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw. 106, 249–259 (2018)
Böttger, T., Ulrich, M.: Real-time texture error detection on textured surfaces with compressed sensing. Pattern Recogni. Image Anal. 26, 88–94 (2016)
Steger, C., Ulrich, M., Wiedemann, C.: Machine Vision Algorithms and Applications. Wiley (2018)
Cohen, N., Hoshen, Y.: Sub-image anomaly detection with deep pyramid correspondences. arXiv preprint arXiv:2005.02357 (2020)
Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., Bharath, A.A.: Generative adversarial networks: an overview. IEEE Signal Process. Mag. 35(1), 53–65 (2018)
Deecke, L., Vandermeulen, R., Ruff, L., Mandt, S., Kloft, M.: Image anomaly detection with generative adversarial networks. In: Berlingerio, M., Bonchi, F., Gärtner, T., Hurley, N., Ifrim, G. (eds.) ECML PKDD 2018. LNCS (LNAI), vol. 11051, pp. 3–17. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10925-7_1
Faust, K., et al.: Visualizing histopathologic deep learning classification and anomaly detection using nonlinear feature space dimensionality reduction. BMC Bioinform. 19(1), 1–15 (2018)
Kiran, B.R., Thomas, D.M., Parakkal, R.: An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos. J. Imaging 4(2), 36 (2018)
Klushyn, A., Chen, N., Kurle, R., Cseke, B., van der Smagt, P.: Learning hierarchical priors in vaes. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 2866–2875. Curran Associates, Inc. (2019)
Lee, C.K., Cheon, Y.J., Hwang, W.Y.: Studies on the GAN-based anomaly detection methods for the time series data. IEEE Access 9, 73201–73215 (2021)
Li, C.L., Sohn, K., Yoon, J., Pfister, T.: Cutpaste: self-supervised learning for anomaly detection and localization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9664–9674 (2021)
Liu, B., Wang, D., Lin, K., Tan, P.N., Zhou, J.: Unsupervised anomaly detection by robust collaborative autoencoders (2021)
Ma, X., et al.: Understanding adversarial attacks on deep learning based medical image analysis systems. Pattern Recogn. 110, 107332 (2021)
Mishra, N., Rohaninejad, M., Chen, X., Abbeel, P.: A simple neural attentive meta-learner. arXiv preprint arXiv:1707.03141 (2017)
Mishra, P., Piciarelli, C., Foresti, G.L.: A neural network for image anomaly detection with deep pyramidal representations and dynamic routing. Int. J. Neural Syst. 30(10), 2050060–2050060 (2020)
Mishra, P., Piciarelli, C., Foresti, G.L.: Image anomaly detection by aggregating deep pyramidal representations. In: Del Bimbo, A., Cucchiara, R., Sclaroff, S., Farinella, G.M., Mei, T., Bertini, M., Escalante, H.J., Vezzani, R. (eds.) ICPR 2021. LNCS, vol. 12664, pp. 705–718. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68799-1_51
Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: VT-ADL: a vision transformer network for image anomaly detection and localization. In: 30th IEEE/IES International Symposium on Industrial Electronics (ISIE), June 2021
Napoletano, P., Piccoli, F., Schettini, R.: Anomaly detection in nanofibrous materials by CNN-based self-similarity. Sensors 18(1), 209 (2018)
Oktay, O., et al.: Attention u-net: Learning where to look for the pancreas. ArXiv abs/1804.03999 (2018)
Pang, G., Shen, C., Cao, L., Hengel, A.V.D.: Deep learning for anomaly detection: a review. ACM Comput. Surv. 54(2), 1–38 (2021)
Piciarelli, C., Avola, D., Pannone, D., Foresti, G.L.: A vision-based system for internal pipeline inspection. IEEE Trans. Ind. Inform. 15(6), 3289–3299 (2018). early access
Piciarelli, C., Micheloni, C., Foresti, G.L.: Trajectory-based anomalous event detection. IEEE Trans. Circ. Syst. Video Technol. 18(11), 1544–1554 (2008)
Piciarelli, C., Mishra, P., Foresti, G.L.: Supervised anomaly detection with highly imbalanced datasets using capsule networks. Int. J. Pattern Recogn. Artif. Intell. 35(8), 2152010 (2021)
Reiss, T., Cohen, N., Bergman, L., Hoshen, Y.: Panda: adapting pretrained features for anomaly detection and segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2806–2814 (2021)
Schlegl, T., Seeböck, P., Waldstein, S.M., Langs, G., Schmidt-Erfurth, U.: f-anogan: Fast unsupervised anomaly detection with generative adversarial networks. Med. Image Anal. 54, 30–44 (2019)
Wang, J., Ma, Y., Zhang, L., Gao, R.X., Wu, D.: Deep learning for smart manufacturing: methods and applications. J. Manufact. Syst. 48, 144–156 (2018)
Yu, P., Yan, X.: Stock price prediction based on deep neural networks. NeuralComput. Appl.32(6), 1609–1628 (2020)
Zavrtanik, V., Kristan, M., Skočaj, D.: Reconstruction by inpainting for visual anomaly detection. Pattern Recogn. 112, 107706 (2021)
Acknowledgement
This work was partially supported by the ONRG project N62909-20-1-2075 Target Re-Association for Autonomous Agents (TRAAA).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
de Nardin, A., Mishra, P., Piciarelli, C., Foresti, G.L. (2022). Bringing Attention to Image Anomaly Detection. In: Mazzeo, P.L., Frontoni, E., Sclaroff, S., Distante, C. (eds) Image Analysis and Processing. ICIAP 2022 Workshops. ICIAP 2022. Lecture Notes in Computer Science, vol 13373. Springer, Cham. https://doi.org/10.1007/978-3-031-13321-3_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-13321-3_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-13320-6
Online ISBN: 978-3-031-13321-3
eBook Packages: Computer ScienceComputer Science (R0)