Dynamic Pruning for Parsimonious CNN Inference on Embedded Systems | SpringerLink
Skip to main content

Dynamic Pruning for Parsimonious CNN Inference on Embedded Systems

  • Conference paper
  • First Online:
Design and Architecture for Signal and Image Processing (DASIP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13425))

  • 392 Accesses

Abstract

As a consequence of the current edge-processing trend, Convolutional Neural Networks (CNNs) deployment has spread to a rich landscape of devices, highlighting the need to reduce the algorithm’s complexity and exploit hardware-aided computing, as two prospective ways to improve performance on resource-constrained embedded systems. In this work, we refer to a compression method reducing a CNN computational workload based on the complexity of the data to be processed, by pruning unnecessary connections at runtime. To evaluate its efficiency when applied on edge processing platforms, we consider a keyword spotting (KWS) task executing on SensorTile, a low-power microcontroller platform by ST, and an image recognition task running on NEURAghe, an FPGA-based inference accelerator. In the first case, we obtained a 51% average reduction of the computing workload, resulting in up to 44% inference speedup, and 15% energy-saving, while in the latter, a 36% speedup is achieved, thanks to a 44% workload reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6863
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 8579
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)

    Article  Google Scholar 

  2. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015)

    Google Scholar 

  3. Jouppi, N.P., et al.: In-datacenter performance analysis of a tensor processing unit. In: ISCA 2017: Proceedings of the 44th Annual International Symposium on Computer Architecture, pp. 1–12, June 2017. https://doi.org/10.1145/3079856.3080246

  4. Azarkhish, E., Rossi, D., Loi, I., Benini, L.: Neurostream: scalable and energy efficient deep learning with smart memory cubes. IEEE Trans. Parallel Distrib. Syst. 22(2), 420–434 (2018)

    Article  Google Scholar 

  5. Desoli, G., et al.: 14.1 a 2.9TOPS/W deep convolutional neural network SoC in FD-SOI 28 nm for intelligent embedded systems. In: 2017 IEEE International Solid-State Circuits Conference (ISSCC), pp. 238–239 (2017)

    Google Scholar 

  6. Movidius: Movidius neural compute stick: accelerate deep learning development at the edge (2020). https://developer.movidius.com/

  7. Chen, Y.-H., Emer, J., Sze, V.: Eyeriss: a spatial architecture for energy-efficient dataflow for convolutional neural networks. In: 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA), pp. 367–379 (2016)

    Google Scholar 

  8. NVIDIA: Nvidia deep learning accelerator (2020). https://developer.nvidia.com/embedded/buy/tegra-k1-processor

  9. Blott, M., Preusser, T., Fraser, N., Gambardella, G., O’Brien, K., Umuroglu, Y.: FINN-R: an end-to-end deep-learning framework for fast exploration of quantized neural networks. ACM Trans. Reconfigurable Technol. Syst. (TRETS) (2018). https://doi.org/10.1145/3242897

  10. Meloni, P., et al.: NEURAghe: exploiting CPU-FPGA synergies for efficient and flexible CNN inference acceleration on Zynq SoCs. ACM Trans. Reconfigurable Technol. Syst. (TRETS) (2018). https://doi.org/10.1145/3284357

  11. NVIDIA: cuDNN (2020). https://developer.nvidia.com/cudnn

  12. Lai, L., Suda, N., Chandra, V.: CMSIS-NN: efficient neural network kernels for Arm Cortex-M CPUs. CoRR, abs/1801.06601 (2018). http://arxiv.org/abs/1801.06601

  13. ARM-NN (2020). https://www.arm.com/products/silicon-ip-cpu/machine-learning/arm-nn

  14. Han, S., et al.: EIE: efficient inference engine on compressed deep neural network. In: ISCA 2016: Proceedings of the 43rd International Symposium on Computer Architecture, pp. 243–254, June 2016. https://doi.org/10.1109/ISCA.2016.30

  15. Han, S., et al.: ESE: efficient speech recognition engine with sparse LSTM on FPGA. In: FPGA 2017: Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 75–84, February 2017. https://doi.org/10.1145/3020078.3021745

  16. Theodorakopoulos, I., Pothos, V., Kastaniotis, D., Fragoulis, N.: Parsimonious inference on convolutional neural networks: learning and applying on-line kernel activation rules. CoRR, abs/1701.05221 (2017). https://arxiv.org/abs/1701.05221

  17. Krizhevsky, A.: Learning multiple layers of features from tiny images (2009). https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

  18. Iandola, F.N., et al.: SqueezeNet: AlexNet-Level accuracy with 50x fewer parameters and \(<\)0.5 mb model size. CoRR, abs/1602.07360 (2016). http://arxiv.org/abs/1602.07360

  19. Zhang, Y., Suda, N., Lai, L., Chandra, V.: Hello edge: keyword spotting on microcontrollers. CoRR, arXiv:1711.07128 (2017)

  20. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural networks with pruning, trained quantization and Huffman coding. In: International Conference on Learning Representations 2016, October 2015. https://arxiv.org/abs/1510.00149

  21. Gope, D., Dasika, G., Mattina, M.: Ternary hybrid neural-tree networks for highly constrained IoT applications (2019)

    Google Scholar 

  22. Hua, W., Zhou, Y., De Sa, C., Zhang, Z., Suh, G.E.: Boosting the performance of CNN accelerators with dynamic fine-grained channel gating. In: Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, ser. MICRO 52, pp. 139–150. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3352460.3358283

  23. Lin, J., Rao, Y., Lu, J., Zhou, J.: Runtime neural pruning. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017). https://proceedings.neurips.cc/paper/2017/file/a51fb975227d6640e4fe47854476d133-Paper.pdf

  24. Tschannen, M., Khanna, A., Anandkumar, A.: StrassenNets: deep learning with a multiplication budget. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, vol. 80, pp. 4985–4994. PMLR, 10–15 July 2018. https://proceedings.mlr.press/v80/tschannen18a.html

  25. Kumar, A., Goyal, S., Varma, M.: Resource-efficient machine learning in 2 KB RAM for the internet of things. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, vol. 70, pp. 1935–1944. PMLR, 06–11 August 2017. https://proceedings.mlr.press/v70/kumar17a.html

  26. Warden, P.: Speech commands: a dataset for limited-vocabulary speech recognition. CoRR, arXiv:1804.03209 (2018)

  27. Scrugli, M.A., Loi, D., Raffo, L., Meloni, P.: A runtime-adaptive cognitive IoT node for healthcare monitoring. In: Proceedings of the 16th Conference on Computing Frontiers (CF 2019), pp. 350–357, April 2019. https://doi.org/10.1145/3310273.3323160

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Busia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Busia, P., Theodorakopoulos, I., Pothos, V., Fragoulis, N., Meloni, P. (2022). Dynamic Pruning for Parsimonious CNN Inference on Embedded Systems. In: Desnos, K., Pertuz, S. (eds) Design and Architecture for Signal and Image Processing. DASIP 2022. Lecture Notes in Computer Science, vol 13425. Springer, Cham. https://doi.org/10.1007/978-3-031-12748-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-12748-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-12747-2

  • Online ISBN: 978-3-031-12748-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics