Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chand, S., Davis, J.: What is smart manufacturing, Time Magazine Wrapper
Horrocks, I., Giese, M., Kharlamov, E., Waaler, A.: Using semantic technology to tame the data variety challenge. IEEE Internet Comput. 20(6), 62–66 (2016)
Kagermann, H.: Change through digitization—value creation in the age of industry 4.0. In: Albach, H., Meffert, H., Pinkwart, A., Reichwald, R. (eds.) Management of Permanent Change, pp. 23–45. Springer, Wiesbaden (2015). https://doi.org/10.1007/978-3-658-05014-6_2
Gimpel, G.: Bringing dark data into the light: illuminating existing IoT data lost within your organization. Bus. Horiz. 63(4), 519–530 (2020)
Zhou, B.: Machine learning methods for product quality monitoring in electric resistance welding, Ph.D. thesis, Karlsruhe Institute of Technology, Germany (2021)
Svetashova, Y., et al.: Ontology-enhanced machine learning: a Bosch use case of welding quality monitoring. In: Pan, J.Z., et al. (eds.) ISWC 2020. LNCS, vol. 12507, pp. 531–550. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62466-8_33
Zhou, B., et al.: SemML: facilitating development of ML models for condition monitoring with semantics. J. Web Semant. 71, 100664 (2021)
Svetashova, Y., Zhou, B., Schmid, S., Pychynski, T., Kharlamov, E.: SemML: reusable ML for condition monitoring in discrete manufacturing. ISWC (Demos/Ind.) 2721, 213–218 (2020)
Zhou, B., Zhou, D., Chen, J., Svetashova, Y., Cheng, G., Kharlamov, E.: Scaling usability of ML analytics with knowledge graphs: exemplified with a Bosch welding case. In: IJCKG, pp. 54–63 (2021)
Zhou, D., Zhou, B., Chen, J., Cheng, G., Kostylev, E., Kharlamov, E.:Towards ontology reshaping for KG generation with user-in-the-loop: applied to Bosch welding. In: IJCKG, pp. 145–150 (2021)
DOME4.0, Digital open marketplace ecosystem 4.0. https://dome40.eu/. Accessed 14 Mar 2022 (2022)
Z. Zheng, et al.: Query-based industrial analytics over knowledge graphs with ontology reshaping. In: ESWC (Posters & Demos). Springer (2022)
Zhou, D., et al.: Enhancing knowledge graph generation with ontology reshaping - Bosch case. In: ESWC (Demos/Industry). Springer (2022)
Andresel, M., Stepanova, D., Tran, T. K., Domokos, C., Minervini, P.: Neuro-symbolic ontology-mediated query answering
Shi, Y., Cheng, G., Kharlamov, E.: Keyword search over knowledge graphs via static and dynamic hub labelings. In: WWW, pp. 235–245 (2020)
Shi, Y., Cheng, G., Tran, T. K., Tang, J., Kharlamov, E.: Keyword-based knowledge graph exploration based on quadratic group Steiner trees. In: IJCAI 2021, pp. 1555–1562 (2021)
Shi, Y., Cheng, G., Tran, T.K., Kharlamov, E., Shen, Y.: Efficient computation of semantically cohesive subgraphs for keyword-based knowledge graph exploration. In: WWW, pp. 1410–1421 (2021)
Wang, X., et al.: A framework for evaluating snippet generation for dataset search. In: ISWC, pp. 680–697 (2019)
ang, X., Cheng, G., Pan, J. Z., Kharlamov, E., Qu, Y.: BANDAR: benchmarking snippet generation algorithms for (RDF) dataset search, IEEE Trans. Knowl. Data Eng
Wang, X., Cheng, G., Kharlamov, E.: Towards multi-facet snippets for dataset search. In: PROFILES/SEMEX@ISWC 2019, pp. 1–6 (2019)
Wang, X., et al.: PCSG: pattern-coverage snippet generation for RDF datasets. In: Hotho, A., et al. (eds.) ISWC 2021. LNCS, vol. 12922, pp. 3–20. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88361-4_1
Tran, T. K., Le-Tuan, A., Nguyen-Duc, M., Yuan, J., Le-Phuoc, D.: Fantastic data and how to query them. arXiv preprint arXiv:2201.05026
Zhou, B., Pychynski, T., Reischl, M., Kharlamov, E., Mikut, R.: Machine learning with domain knowledge for predictive quality monitoring in resistance spot welding. J. Intell. Manufact. 33(4), 1139–1163 (2022). https://doi.org/10.1007/s10845-021-01892-y
Zhou, B., Svetashova, Y., Byeon, S., Pychynski, T., Mikut, R., Kharlamov, E.: Predicting quality of automated welding with machine learning and semantics: a Bosch case study. In: CIKM, ACM, pp. 2933–2940 (2020)
Zhou, B., Svetashova, Y., Pychynski, T., Baimuratov, I., Soylu, A., Kharlamov, E.: SemFE: facilitating ML pipeline development with semantics. In: CIKM, ACM, pp. 3489–3492 (2020)
DataCloud, Enabling the big data pipeline lifecycle on the computing continuum (2022). https://datacloudproject.eu/. Accessed 14 Mar 2022
Roman, D., et al.: Big data pipelines on the computing continuum: ecosystem and use cases overview. In: ISCC, IEEE, pp. 1–4 (2021)
OntoCommons, Ontology-driven data documentation for industry commons (2022). https://ontocommons.eu/. Accessed 14 Mar 2022
Yahya, M., et al.: Towards generalized welding ontology in line with ISO and knowledge graph construction. In: ESWC (Posters & Demos). Springer (2022)
Acknowledgements
The work was partially supported by the H2020 projects Dome 4.0 (Grant Agreement No. 953163), OntoCommons (Grant Agreement No. 958371), and DataCloud (Grant Agreement No. 101016835) and the SIRIUS Centre, Norwegian Research Council project number 237898.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhou, B. et al. (2022). The Data Value Quest: A Holistic Semantic Approach at Bosch. In: Groth, P., et al. The Semantic Web: ESWC 2022 Satellite Events. ESWC 2022. Lecture Notes in Computer Science, vol 13384. Springer, Cham. https://doi.org/10.1007/978-3-031-11609-4_42
Download citation
DOI: https://doi.org/10.1007/978-3-031-11609-4_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-11608-7
Online ISBN: 978-3-031-11609-4
eBook Packages: Computer ScienceComputer Science (R0)