The Data Value Quest: A Holistic Semantic Approach at Bosch | SpringerLink
Skip to main content

The Data Value Quest: A Holistic Semantic Approach at Bosch

  • Conference paper
  • First Online:
The Semantic Web: ESWC 2022 Satellite Events (ESWC 2022)

Abstract

Introduction. Modern industry witnesses a fast growth in volume and complexity of heterogeneous manufacturing (big) data [1, 2] thanks to the technological advances of Industry 4.0 [1, 3], including development in perception, communication, processing, and actuation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9151
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11439
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://blog.s4rb.com/data-is-the-oil-of-the-21st-century.

References

  1. Chand, S., Davis, J.: What is smart manufacturing, Time Magazine Wrapper

    Google Scholar 

  2. Horrocks, I., Giese, M., Kharlamov, E., Waaler, A.: Using semantic technology to tame the data variety challenge. IEEE Internet Comput. 20(6), 62–66 (2016)

    Article  Google Scholar 

  3. Kagermann, H.: Change through digitization—value creation in the age of industry 4.0. In: Albach, H., Meffert, H., Pinkwart, A., Reichwald, R. (eds.) Management of Permanent Change, pp. 23–45. Springer, Wiesbaden (2015). https://doi.org/10.1007/978-3-658-05014-6_2

    Chapter  Google Scholar 

  4. Gimpel, G.: Bringing dark data into the light: illuminating existing IoT data lost within your organization. Bus. Horiz. 63(4), 519–530 (2020)

    Article  Google Scholar 

  5. Zhou, B.: Machine learning methods for product quality monitoring in electric resistance welding, Ph.D. thesis, Karlsruhe Institute of Technology, Germany (2021)

    Google Scholar 

  6. Svetashova, Y., et al.: Ontology-enhanced machine learning: a Bosch use case of welding quality monitoring. In: Pan, J.Z., et al. (eds.) ISWC 2020. LNCS, vol. 12507, pp. 531–550. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62466-8_33

    Chapter  Google Scholar 

  7. Zhou, B., et al.: SemML: facilitating development of ML models for condition monitoring with semantics. J. Web Semant. 71, 100664 (2021)

    Article  Google Scholar 

  8. Svetashova, Y., Zhou, B., Schmid, S., Pychynski, T., Kharlamov, E.: SemML: reusable ML for condition monitoring in discrete manufacturing. ISWC (Demos/Ind.) 2721, 213–218 (2020)

    Google Scholar 

  9. Zhou, B., Zhou, D., Chen, J., Svetashova, Y., Cheng, G., Kharlamov, E.: Scaling usability of ML analytics with knowledge graphs: exemplified with a Bosch welding case. In: IJCKG, pp. 54–63 (2021)

    Google Scholar 

  10. Zhou, D., Zhou, B., Chen, J., Cheng, G., Kostylev, E., Kharlamov, E.:Towards ontology reshaping for KG generation with user-in-the-loop: applied to Bosch welding. In: IJCKG, pp. 145–150 (2021)

    Google Scholar 

  11. DOME4.0, Digital open marketplace ecosystem 4.0. https://dome40.eu/. Accessed 14 Mar 2022 (2022)

  12. Z. Zheng, et al.: Query-based industrial analytics over knowledge graphs with ontology reshaping. In: ESWC (Posters & Demos). Springer (2022)

    Google Scholar 

  13. Zhou, D., et al.: Enhancing knowledge graph generation with ontology reshaping - Bosch case. In: ESWC (Demos/Industry). Springer (2022)

    Google Scholar 

  14. Andresel, M., Stepanova, D., Tran, T. K., Domokos, C., Minervini, P.: Neuro-symbolic ontology-mediated query answering

    Google Scholar 

  15. Shi, Y., Cheng, G., Kharlamov, E.: Keyword search over knowledge graphs via static and dynamic hub labelings. In: WWW, pp. 235–245 (2020)

    Google Scholar 

  16. Shi, Y., Cheng, G., Tran, T. K., Tang, J., Kharlamov, E.: Keyword-based knowledge graph exploration based on quadratic group Steiner trees. In: IJCAI 2021, pp. 1555–1562 (2021)

    Google Scholar 

  17. Shi, Y., Cheng, G., Tran, T.K., Kharlamov, E., Shen, Y.: Efficient computation of semantically cohesive subgraphs for keyword-based knowledge graph exploration. In: WWW, pp. 1410–1421 (2021)

    Google Scholar 

  18. Wang, X., et al.: A framework for evaluating snippet generation for dataset search. In: ISWC, pp. 680–697 (2019)

    Google Scholar 

  19. ang, X., Cheng, G., Pan, J. Z., Kharlamov, E., Qu, Y.: BANDAR: benchmarking snippet generation algorithms for (RDF) dataset search, IEEE Trans. Knowl. Data Eng

    Google Scholar 

  20. Wang, X., Cheng, G., Kharlamov, E.: Towards multi-facet snippets for dataset search. In: PROFILES/SEMEX@ISWC 2019, pp. 1–6 (2019)

    Google Scholar 

  21. Wang, X., et al.: PCSG: pattern-coverage snippet generation for RDF datasets. In: Hotho, A., et al. (eds.) ISWC 2021. LNCS, vol. 12922, pp. 3–20. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88361-4_1

    Chapter  Google Scholar 

  22. Tran, T. K., Le-Tuan, A., Nguyen-Duc, M., Yuan, J., Le-Phuoc, D.: Fantastic data and how to query them. arXiv preprint arXiv:2201.05026

  23. Zhou, B., Pychynski, T., Reischl, M., Kharlamov, E., Mikut, R.: Machine learning with domain knowledge for predictive quality monitoring in resistance spot welding. J. Intell. Manufact. 33(4), 1139–1163 (2022). https://doi.org/10.1007/s10845-021-01892-y

    Article  Google Scholar 

  24. Zhou, B., Svetashova, Y., Byeon, S., Pychynski, T., Mikut, R., Kharlamov, E.: Predicting quality of automated welding with machine learning and semantics: a Bosch case study. In: CIKM, ACM, pp. 2933–2940 (2020)

    Google Scholar 

  25. Zhou, B., Svetashova, Y., Pychynski, T., Baimuratov, I., Soylu, A., Kharlamov, E.: SemFE: facilitating ML pipeline development with semantics. In: CIKM, ACM, pp. 3489–3492 (2020)

    Google Scholar 

  26. DataCloud, Enabling the big data pipeline lifecycle on the computing continuum (2022). https://datacloudproject.eu/. Accessed 14 Mar 2022

  27. Roman, D., et al.: Big data pipelines on the computing continuum: ecosystem and use cases overview. In: ISCC, IEEE, pp. 1–4 (2021)

    Google Scholar 

  28. OntoCommons, Ontology-driven data documentation for industry commons (2022). https://ontocommons.eu/. Accessed 14 Mar 2022

  29. Yahya, M., et al.: Towards generalized welding ontology in line with ISO and knowledge graph construction. In: ESWC (Posters & Demos). Springer (2022)

    Google Scholar 

Download references

Acknowledgements

The work was partially supported by the H2020 projects Dome 4.0 (Grant Agreement No. 953163), OntoCommons (Grant Agreement No. 958371), and DataCloud (Grant Agreement No. 101016835) and the SIRIUS Centre, Norwegian Research Council project number 237898.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baifan Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, B. et al. (2022). The Data Value Quest: A Holistic Semantic Approach at Bosch. In: Groth, P., et al. The Semantic Web: ESWC 2022 Satellite Events. ESWC 2022. Lecture Notes in Computer Science, vol 13384. Springer, Cham. https://doi.org/10.1007/978-3-031-11609-4_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11609-4_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11608-7

  • Online ISBN: 978-3-031-11609-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics