Abstract
Leveraging a GraphQL-based federated query service that integrates multiple scholarly communication infrastructures (specifically, DataCite, ORCID, ROR, OpenAIRE, Semantic Scholar, Wikidata and Altmetric), we develop a novel web widget based approach for the presentation of scholarly knowledge with rich contextual information. We implement the proposed approach in the Open Research Knowledge Graph (ORKG) and showcase it on three kinds of widgets. First, we devise a widget for the ORKG paper view that presents contextual information about related datasets, software, project information, topics, and metrics. Second, we extend the ORKG contributor profile view with contextual information including authored articles, developed software, linked projects, and research interests. Third, we advance ORKG comparison faceted search by introducing contextual facets (e.g. citations). As a result, the devised approach enables presenting ORKG scholarly knowledge flexibly enriched with contextual information sourced in a federated manner from numerous technologically heterogeneous scholarly communication infrastructures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
References
Arya, D., Ha-Thuc, V., Sinha, S.: Personalized federated search at Linkedin. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, CIKM 2015, pp. 1699–1702. Association for Computing Machinery, New York, NY, USA (2015). https://doi.org/10.1145/2806416.2806615
Burton, A., et al.: The scholix framework for interoperability in data-literature information exchange. D-Lib Mag. 23(1/2) (2017). Corporation for National Research Initiatives https://doi.org/10.1045/january2017-burton
Cousijn, H., et al.: Connected research: the potential of the PID graph. Patterns 2(1), 100180 (2021)
Fenner, M., Aryani, A.: Introducing the PID Graph (2019)
Haris, M., Farfar, K.E., Stocker, M., Auer, S.: Federating scholarly infrastructures with GraphQL. In: Ke, H.R., Lee, C.S., Sugiyama, K. (eds.) Towards Open and Trustworthy Digital Societies, pp. 308–324. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91669-5_24
Haris, M., Stocker, M.: Comparison of different scholarly communication infrastructures (2022). https://doi.org/10.48366/R165794, https://www.orkg.org/orkg/comparison/R165794
Hasnain, A., et al.: BioFed: federated query processing over life sciences linked open data. J. Biomed. Semant. 8, 13 (2017). https://doi.org/10.1186/s13326-017-0118-0
Heibi, I., Peroni, S., Shotton, D.: Enabling text search on SparQL endpoints through Oscar. Data Sci. 2, 205–227 (2019). https://doi.org/10.3233/DS-190016
Heidari, G., Ramadan, A., Stocker, M., Auer, S.: Leveraging a federation of knowledge graphs to improve faceted search in digital libraries (2021). https://doi.org/10.1007/978-3-030-86324-1_18
Himmelstein, D.S., et al.: Systematic integration of biomedical knowledge prioritizes drugs for repurposing. Elife 6, e26726 (2017)
Jaradeh, M.Y., et al.: Open research knowledge graph: next generation infrastructure for semantic scholarly knowledge. In: 10th International Conference on Knowledge Capture, K-CAP 2019. ACM (2019). https://doi.org/10.1145/3360901.3364435
Khan, S., Liu, X., Shakil, K.A., Alam, M.: A survey on scholarly data: from big data perspective. Inf. Process. Manag. 53(4), 923–944 (2017)
Kurteva, A., De Ribaupierre, H.: Interface to query and visualise definitions from a knowledge base. In: Brambilla, M., Chbeir, R., Frasincar, F., Manolescu, I. (eds.) ICWE 2021. LNCS, vol. 12706, pp. 3–10. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-74296-6_1
Liekens, A.M., De Knijf, J., Daelemans, W., Goethals, B., De Rijk, P., Del-Favero, J.: Biograph: unsupervised biomedical knowledge discovery via automated hypothesis generation. Genome Biol. 12(6), 1–12 (2011)
Manghi, P., Bolikowski, L., Manola, N., Schirrwagen, J., Smith, T.: OpenAIREplus: the European scholarly communication data infrastructure. D-Lib Mag. 18 (2012). https://doi.org/10.1045/september2012-manghi
Manghi, P., Houssos, N., Mikulicic, M., Jörg, B.: The data model of the OpenAIRE scientific communication e-Infrastructure. In: Dodero, J.M., Palomo-Duarte, M., Karampiperis, P. (eds.) MTSR 2012. CCIS, vol. 343, pp. 168–180. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35233-1_18
Morton, K., et al.: ROBOKOP: an abstraction layer and user interface for knowledge graphs to support question answering. Bioinformatics 35(24), 5382–5384 (2019). https://doi.org/10.1093/bioinformatics/btz604
Mosharraf, M., Taghiyareh, F.: Federated search engine for open educational linked data. Bull. IEEE Tech. Comm. Learn. Technol. 18(6), 6–9 (2016)
Nielsen, F.Å., Mietchen, D., Willighagen, E.: Scholia, Scientometrics and Wikidata. In: Blomqvist, E., Hose, K., Paulheim, H., Ławrynowicz, A., Ciravegna, F., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10577, pp. 237–259. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70407-4_36
Oelen, A., Jaradeh, M.Y., Stocker, M., Auer, S.: Generate fair literature surveys with scholarly knowledge graphs. In: Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020, JCDL 2020, pp. 97–106. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3383583.3398520
Safder, I., Hassan, S.U., Aljohani, N.R.: AI cognition in searching for relevant knowledge from scholarly big data, using a multi-layer perceptron and recurrent convolutional neural network model. In: Companion Proceedings of the the Web Conference 2018, pp. 251–258 (2018)
Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: Optimization techniques for federated query processing on linked data. In: International Semantic Web Conference (2011)
Stocker, M., et al.: Persistent identification of instruments. Data Sci. J. 19, 1–12 (2020). https://doi.org/10.5334/dsj-2020-018
Xia, F., Wang, W., Bekele, T.M., Liu, H.: Big scholarly data: a survey. IEEE Trans. Big Data 3(1), 18–35 (2017)
Zaki, N., Tennakoon, C.: BioCarian: search engine for exploratory searches in heterogeneous biological databases. BMC Bioinform. 18, 435 (2017). https://doi.org/10.1186/s12859-017-1840-4
Zhou, Y., De, S., Moessner, K.: Implementation of federated query processing on linked data. In: 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 3553–3557 (2013). https://doi.org/10.1109/PIMRC.2013.6666765
Acknowledgment
This work was co-funded by the European Research Council for the project ScienceGRAPH (Grant agreement ID: 819536) and TIB–Leibniz Information Centre for Science and Technology.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Haris, M., Stocker, M., Auer, S. (2022). Enriching Scholarly Knowledge with Context. In: Di Noia, T., Ko, IY., Schedl, M., Ardito, C. (eds) Web Engineering. ICWE 2022. Lecture Notes in Computer Science, vol 13362. Springer, Cham. https://doi.org/10.1007/978-3-031-09917-5_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-09917-5_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-09916-8
Online ISBN: 978-3-031-09917-5
eBook Packages: Computer ScienceComputer Science (R0)