Abstract
Recent face reenactment paradigm involves estimating an optical flow to warp the source image or its feature maps such that pixel values can be sampled to generate the reenacted image. We propose a one-shot framework in which the reenactment of the overall face and individual landmarks are decoupled. We show that a shallow Vision Transformer can effectively estimate optical flow without much parameters and training data. When reenacting different identities, our method remedies previous conditional generator based method’s inability to preserve identities in reenacted images. To address the identity preserving problem in face reenactment, we model landmark coordinate transformation as a style transfer problem, yielding further improvement on preserving the source image’s identity in the reenacted image. Our method achieves the lower head pose error on the CelebV dataset while obtaining competitive results in identity preserving and expression accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amos, B., Ludwiczuk, B., Satyanarayanan, M.: OpenFace: a general-purpose face recognition library with mobile applications. Technical report, CMU-CS-16-118, CMU School of Computer Science (2016)
Baltrusaitis, T., Zadeh, A., Lim, Y.C., Morency, L.P.: OpenFace 2.0: facial behavior analysis toolkit. In: 13th IEEE International Conference on Automatic Face Gesture Recognition (2018)
Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: SIGGRAPH (1999)
Cheng, Y.T., et al.: 3D-model-based face replacement in video. In: SIGGRAPH (2009)
Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face recognition. In: CVPR (2019)
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv: 2010.11929 (2020)
Ha, S., Kersner, M., Kim, B., Seo, S., Kim, D.: MarioNETte: few-shot face reenactment preserving identity of unseen targets. In: AAAI (2020)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. arXiv: 1512.03385 (2015)
Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: ICCV (2017)
Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer networks. In: NIPS (2015)
Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43
Kim, H., et al.: Deep video portraits. ACM Trans. Graph. 37, 1–14 (2018)
Liu, Y., et al.: A survey of visual transformers. arXiv: 2111.06091 (2021)
Odena, A., Dumoulin, V., Olah, C.: Deconvolution and checkerboard artifacts. Distill 1, e3 (2016)
Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv: 1511.06434 (2016)
Ranjan, A., Bolkart, T., Sanyal, S., Black, M.J.: Generating 3D faces using convolutional mesh autoencoders. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 725–741. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_43
Siarohin, A., Lathuilière, S., Tulyakov, S., Ricci, E., Sebe, N.: First order motion model for image animation. In: Advances in Neural Information Processing Systems (2019)
Siarohin, A., Lathuilière, S., Tulyakov, S., Ricci, E., Sebe, N.: Animating arbitrary objects via deep motion transfer. In: CVPR (2019)
Suwajanakorn, S., Seitz, S.M., Kemelmacher-Shlizerman, I.: What makes tom hanks look like tom hanks. In: ICCV (2015)
Thies, J., Zollhöfer, M., Stamminger, M., Theobalt, C., Nießner, M.: Face2Face: real-time face capture and reenactment of RGB videos. In: CVPR (2016)
Vaswani, A., et al.: Attention is all you need. In: NIPS (2017)
Vlasic, D., Brand, M., Pfister, H., Popović, J.: Face transfer with multilinear models. ACM Trans. Graph. (2005)
Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: CVPR (2018)
Wiles, O., Koepke, A.S., Zisserman, A.: X2Face: a network for controlling face generation using images, audio, and pose codes. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 690–706. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_41
Wu, W., Zhang, Y., Li, C., Qian, C., Loy, C.C.: ReenactGAN: learning to reenact faces via boundary transfer. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 622–638. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_37
Yao, G., et al.: One-shot face reenactment using appearance adaptive normalization. arXiv: 2102.03984 (2021)
Yao, G., Yuan, Y., Shao, T., Zhou, K.: Mesh guided one-shot face reenactment using graph convolutional networks. In: 28th ACM International Conference on Multimedia (2020)
Zakharov, E., Shysheya, A., Burkov, E., Lempitsky, V.: Few-shot adversarial learning of realistic neural talking head models. In: ICCV (2019)
Zeng, X., Pan, Y., Wang, M., Zhang, J., Liu, Y.: Realistic face reenactment via self-supervised disentangling of identity and pose. In: AAAI (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Hu, C., Xie, X. (2022). One-Shot Decoupled Face Reenactment with Vision Transformer. In: El Yacoubi, M., Granger, E., Yuen, P.C., Pal, U., Vincent, N. (eds) Pattern Recognition and Artificial Intelligence. ICPRAI 2022. Lecture Notes in Computer Science, vol 13364. Springer, Cham. https://doi.org/10.1007/978-3-031-09282-4_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-09282-4_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-09281-7
Online ISBN: 978-3-031-09282-4
eBook Packages: Computer ScienceComputer Science (R0)