MRI Brain Tumor Segmentation Using Deep Encoder-Decoder Convolutional Neural Networks | SpringerLink
Skip to main content

MRI Brain Tumor Segmentation Using Deep Encoder-Decoder Convolutional Neural Networks

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2021)

Abstract

In this study, we focus on Task 1 of the 2021 Multimodal Brain Tumor Segmentation (BraTS) challenge. We present a modified U-net model aimed at improving the segmentation of glioblastomas, reducing the computation time without compromising detection sensitivity. Our automated approach takes multimodal MR images as input, generates a bounding box of the brain volume, and combines the model predictions at the 2D slice level into a full 3D segmentation that is written into a NIfTI file. On the official 2021 BraTS test set of 570 cases, the model obtained median Dice scores of 0.80, 0.87, and 0.87, as well as median 95% Hausdorff distances of 2.45, 4.64, and 6.40 for the enhancing tumor, tumor core, and whole tumor regions, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ferlay, J., Shin, H.-R., Bray, F., Forman, D., Mathers, C., Parkin, D.M.: Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer 127(12), 2893–2917 (2010). https://doi.org/10.1002/ijc.25516

    Article  Google Scholar 

  2. Van Meir, E.G., Hadjipanayis, C.G., Norden, A.D., Shu, H.-K., Wen, P.Y., Olson, J.J.: Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J. Clin. 60(3), 166–193 (2010)

    Article  Google Scholar 

  3. Bakas, S., et al.: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)

    Article  Google Scholar 

  4. Wen, P.Y., et al.: Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J. Clin. Oncol. 28(11), 1963–1972 (2010)

    Article  Google Scholar 

  5. Seow, P., Wong, J.H.D., Ahmad-Annuar, A., Mahajan, A., Abdullah, N.A., Ramli, N.: Quantitative magnetic resonance imaging and radiogenomic biomarkers for glioma characterisation: a systematic review. Br. J. Radiol. 91(1092), 20170930 (2018)

    Article  Google Scholar 

  6. Liu, L., et al.: Overall survival time prediction for high-grade glioma patients based on large-scale brain functional networks. Brain Imag. Behav. 13(5), 1333–1351 (2018). https://doi.org/10.1007/s11682-018-9949-2

    Article  Google Scholar 

  7. Angelini, E.D., Clatz, O., Mandonnet, E., Konukoglu, E., Capelle, L., Duffau, H.: Glioma dynamics and computational models: a review of segmentation, registration, and in silico growth algorithms and their clinical applications. Curr. Med. Imag. Rev. 3(4), 262–276 (2007)

    Article  Google Scholar 

  8. Baid, U., et al.: The RSNA-ASNR-MICCAI BraTS 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv [cs.CV]. http://arxiv.org/abs/2107.02314 (2021)

  9. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv [cs.CV]. http://arxiv.org/abs/1811.02629 (2018)

  10. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imag. 34(10), 1993–2024 (2015)

    Article  Google Scholar 

  11. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. Cancer Imag. Arch. (2017). https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q

  12. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. arXiv [cs.CV]. http://arxiv.org/abs/1505.04597 (2015)

  13. Fink, J.R., Muzi, M., Peck, M., Krohn, K.A.: Multimodality brain tumor imaging: MR imaging, PET, and PET/MR imaging. J. Nucl. Med. 56(10), 1554–1561 (2015)

    Article  Google Scholar 

  14. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Cancer Imag. Arch. (2017). https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gian Marco Conte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yan, B.B. et al. (2022). MRI Brain Tumor Segmentation Using Deep Encoder-Decoder Convolutional Neural Networks. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2021. Lecture Notes in Computer Science, vol 12963. Springer, Cham. https://doi.org/10.1007/978-3-031-09002-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09002-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09001-1

  • Online ISBN: 978-3-031-09002-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics