Abstract
In this study, we focus on Task 1 of the 2021 Multimodal Brain Tumor Segmentation (BraTS) challenge. We present a modified U-net model aimed at improving the segmentation of glioblastomas, reducing the computation time without compromising detection sensitivity. Our automated approach takes multimodal MR images as input, generates a bounding box of the brain volume, and combines the model predictions at the 2D slice level into a full 3D segmentation that is written into a NIfTI file. On the official 2021 BraTS test set of 570 cases, the model obtained median Dice scores of 0.80, 0.87, and 0.87, as well as median 95% Hausdorff distances of 2.45, 4.64, and 6.40 for the enhancing tumor, tumor core, and whole tumor regions, respectively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ferlay, J., Shin, H.-R., Bray, F., Forman, D., Mathers, C., Parkin, D.M.: Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer 127(12), 2893–2917 (2010). https://doi.org/10.1002/ijc.25516
Van Meir, E.G., Hadjipanayis, C.G., Norden, A.D., Shu, H.-K., Wen, P.Y., Olson, J.J.: Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J. Clin. 60(3), 166–193 (2010)
Bakas, S., et al.: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)
Wen, P.Y., et al.: Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J. Clin. Oncol. 28(11), 1963–1972 (2010)
Seow, P., Wong, J.H.D., Ahmad-Annuar, A., Mahajan, A., Abdullah, N.A., Ramli, N.: Quantitative magnetic resonance imaging and radiogenomic biomarkers for glioma characterisation: a systematic review. Br. J. Radiol. 91(1092), 20170930 (2018)
Liu, L., et al.: Overall survival time prediction for high-grade glioma patients based on large-scale brain functional networks. Brain Imag. Behav. 13(5), 1333–1351 (2018). https://doi.org/10.1007/s11682-018-9949-2
Angelini, E.D., Clatz, O., Mandonnet, E., Konukoglu, E., Capelle, L., Duffau, H.: Glioma dynamics and computational models: a review of segmentation, registration, and in silico growth algorithms and their clinical applications. Curr. Med. Imag. Rev. 3(4), 262–276 (2007)
Baid, U., et al.: The RSNA-ASNR-MICCAI BraTS 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv [cs.CV]. http://arxiv.org/abs/2107.02314 (2021)
Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv [cs.CV]. http://arxiv.org/abs/1811.02629 (2018)
Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imag. 34(10), 1993–2024 (2015)
Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. Cancer Imag. Arch. (2017). https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. arXiv [cs.CV]. http://arxiv.org/abs/1505.04597 (2015)
Fink, J.R., Muzi, M., Peck, M., Krohn, K.A.: Multimodality brain tumor imaging: MR imaging, PET, and PET/MR imaging. J. Nucl. Med. 56(10), 1554–1561 (2015)
Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Cancer Imag. Arch. (2017). https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yan, B.B. et al. (2022). MRI Brain Tumor Segmentation Using Deep Encoder-Decoder Convolutional Neural Networks. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2021. Lecture Notes in Computer Science, vol 12963. Springer, Cham. https://doi.org/10.1007/978-3-031-09002-8_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-09002-8_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-09001-1
Online ISBN: 978-3-031-09002-8
eBook Packages: Computer ScienceComputer Science (R0)