Abstract
This paper describes our submission to Task 1 of the RSNA-ASNR-MICCAI Brain Tumor Segmentation (BraTS) Challenge 2021, where the goal is to segment brain glioblastoma sub-regions in multi-parametric MRI scans. Glioblastoma patients have a very high mortality rate; robust and precise segmentation of the whole tumor, tumor core, and enhancing tumor subregions plays a vital role in patient management. We design a novel multi-encoder, shared decoder U-Net architecture aimed at reducing the effect of signal artefacts that can appear in single channels of the MRI recordings. We train multiple such models on the training images made available from the challenge organizers, collected from 1251 subjects. The ensemble-model achieves Dice Scores of \(0.9274 \pm 0.0930\), \(0.8717 \pm 0.2456\), and \(0.8750 \pm 0.1798\); and Hausdorff distances of \(4.77 \pm 17.05\), \(17.97 \pm 71.54\), and \(10.66 \pm 55.52\); for whole tumor, tumor core, and enhancing tumor, respectively; on the 570 test subjects assessed by the organizer. We investigate the robustness of our automated segmentation system and discuss its possible relevance to existing and future clinical workflows for tumor evaluation and radiation therapy planning.
This work was supported by the Trond Mohn Research Foundation [grant number BFS2018TMT07]. Data used in this publication were obtained as part of the RSNA-ASNR-MICCAI Brain Tumor Segmentation (BraTS) Challenge project through Synapse ID (syn25829067).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Using e.g. our research PACS setup at our local hospital region, https://mmiv.no/wiml/.
References
Baid, U., et al.: The RSNA-ASNR-MICCAI BraTS 2021 Benchmark on Brain Tumor Segmentation and Radiogenomic Classification. arXiv:2107.02314 [cs] (2021). http://arxiv.org/abs/2107.02314
Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. Can. Imaging Archive (2017). https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q
Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Can. Imaging Archive (2017). https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF
Bakas, S., et al.: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017). https://doi.org/10.1038/sdata.2017.117
Menze, B.H., Jakab, A., Bauer, S., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694
Hatamizadeh, A., Yang, D., Roth, H., Xu, D.: UNETR: Transformers for 3D medical image segmentation. arXiv:2103.10504 [cs, eess] (2021), http://arxiv.org/abs/2103.10504
He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. arXiv:1512.03385 [cs] (2015). http://arxiv.org/abs/1512.03385
Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E.: Squeeze-and-Excitation Networks. arXiv:1709.01507 [cs] (2019). http://arxiv.org/abs/1709.01507. version: 4
Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021). https://doi.org/10.1038/s41592-020-01008-z
Jiang, Zeyu, Ding, Changxing, Liu, Minfeng, Tao, Dacheng: Two-stage cascaded U-Net: 1st place solution to BraTS challenge 2019 segmentation task. In: Crimi, Alessandro, Bakas, Spyridon (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 231–241. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_22
Kamnitsas, K., et al.: Ensembles of multiple models and architectures for robust brain tumour segmentation. arXiv:1711.01468 [cs] (2017). http://arxiv.org/abs/1711.01468
Kamnitsas, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017). https://doi.org/10.1016/j.media.2016.10.004, https://www.sciencedirect.com/science/article/pii/S1361841516301839
Lundervold, A.S., Lundervold, A.: An overview of deep learning in medical imaging focusing on MRI. Zeitschrift für Medizinische Physik 29(2), 102–127 (2019). https://doi.org/10.1016/j.zemedi.2018.11.002, https://www.sciencedirect.com/science/article/pii/S0939388918301181
Ma, N., Li, W., Brown, R., Wang, Y., et al.: Project-MONAI/MONAI: 0.6.0 (2021). https://doi.org/10.5281/zenodo.5083813, https://zenodo.org/record/5083813
McKinley, Richard, Meier, Raphael, Wiest, Roland: Ensembles of densely-connected CNNs with label-uncertainty for brain tumor segmentation. In: Crimi, Alessandro, Bakas, Spyridon, Kuijf, Hugo, Keyvan, Farahani, Reyes, Mauricio, van Walsum, Theo (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 456–465. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_40
Nyul, L., Udupa, J., Zhang, X.: New variants of a method of MRI scale standardization. IEEE Trans. Med. Imaging 19(2), 143–150 (2000). https://doi.org/10.1109/42.836373, conference Name: IEEE Transactions on Medical Imaging
Oktay, O., et al.: Attention U-Net: Learning Where to Look for the Pancreas. arXiv:1804.03999 [cs] (2018). http://arxiv.org/abs/1804.03999
Pérez-García, F., Sparks, R., Ourselin, S.: TorchIO: a Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning. Comput. Methods Prog. Biomed. 208, 106236 (2021). https://doi.org/10.1016/j.cmpb.2021.106236, https://www.sciencedirect.com/science/article/pii/S0169260721003102
Rohlfing, T., Zahr, N.M., Sullivan, E.V., Pfefferbaum, A.: The SRI24 multichannel atlas of normal adult human brain structure. Hum. Brain Mapping 31(5), 798–819 (2009). https://doi.org/10.1002/hbm.20906, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2915788/
Ronneberger, Olaf, Fischer, Philipp, Brox, Thomas: U-Net: convolutional networks for biomedical image segmentation. In: Navab, Nassir, Hornegger, Joachim, Wells, William M.., Frangi, Alejandro F.. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Wright, L., Demeure, N.: Ranger21: a synergistic deep learning optimizer. arXiv:2106.13731 [cs] (2021), http://arxiv.org/abs/2106.13731
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Alam, S., Halandur, B., Mana, P.G.L.P., Goplen, D., Lundervold, A., Lundervold, A.S. (2022). Brain Tumor Segmentation from Multiparametric MRI Using a Multi-encoder U-Net Architecture. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2021. Lecture Notes in Computer Science, vol 12963. Springer, Cham. https://doi.org/10.1007/978-3-031-09002-8_26
Download citation
DOI: https://doi.org/10.1007/978-3-031-09002-8_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-09001-1
Online ISBN: 978-3-031-09002-8
eBook Packages: Computer ScienceComputer Science (R0)