Brain Tumor Segmentation Using Neural Network Topology Search | SpringerLink
Skip to main content

Brain Tumor Segmentation Using Neural Network Topology Search

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 12962))

Included in the following conference series:

  • 6036 Accesses

Abstract

We apply a method from Automated Machine Learning (AutoML), namely Neural Architecture Search (NAS), to the task of brain tumor segmentation in MRIs for the BraTS 2021 challenge. NAS methods are known to be compute-intensive, so we use a continuous and differentiable search space in order to apply a DiNTS search for optimal fully convolutional architectures. Our method obtained Dice scores of 0.9161, 0.8707 and 0.8537 for whole tumor, tumor core and enhancing tumor regions respectively on the test dataset, while requiring no manual design of the network architecture, which was found automatically from the provided training data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 14871
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 18589
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Goodenberger, M.L., Jenkins, R.B.: Genetics of adult glioma. Cancer Genet. 205 (2012). https://doi.org/10.1016/j.cancergen.2012.10.009

  2. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  3. Zeng, T., Wu, B., Ji, S.: DeepEM3D: approaching human-level performance on 3D anisotropic EM image segmentation. Bioinformatics 33(16), 2555–2562 (2017). https://doi.org/10.1093/bioinformatics/btx188

  4. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  5. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28

    Chapter  Google Scholar 

  6. Jiang, Z., Ding, C., Liu, M., Tao, D.: Two-stage cascaded U-Net: 1st place solution to BraTS challenge 2019 segmentation task. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 231–241. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_22

    Chapter  Google Scholar 

  7. Isensee, F., Jäger, P.F., Full, P.M., Vollmuth, P., Maier-Hein, K.H.: nnU-Net for brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2020. LNCS, vol. 12659, pp. 118–132. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72087-2_11

    Chapter  Google Scholar 

  8. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning (2017)

    Google Scholar 

  9. Weng, Y., Zhou, T., Li, Y., Qiu, X.: NAS-Unet: neural architecture search for medical image segmentation. IEEE Access 7, 44247–44257 (2019). https://doi.org/10.1109/ACCESS.2019.2908991

    Article  Google Scholar 

  10. Zhu, Z., Liu, C., Yang, D., Yuille, A., Xu, D.: V-NAS: neural architecture search for volumetric medical image segmentation. In: 2019 International Conference on 3D Vision (3DV), pp. 240–248 (2019). https://doi.org/10.1109/3DV.2019.00035

  11. Yu, Q., Yang, D., Roth, H., Bai, Y., Zhang, Y., Yuille, A.L., Xu, D.: C2FNAS: Coarse-to-fine neural architecture search for 3D medical image segmentation (2020)

    Google Scholar 

  12. Antonelli, M., et al.: The medical segmentation decathlon (2021)

    Google Scholar 

  13. Baker, B., Gupta, O., Naik, N., Raskar, R.: Designing neural network architectures using reinforcement learning (2017)

    Google Scholar 

  14. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier architecture search (2019)

    Google Scholar 

  15. He, Y., Yang, D., Roth, H., Zhao, C., Xu, D.: DiNTS: differentiable neural network topology search for 3d medical image segmentation, March 2021

    Google Scholar 

  16. Baid, U., et al.: The RSNA-ASNR-MICCAI BraTS 2021 benchmark on brain tumor segmentation and radiogenomic classification (2021)

    Google Scholar 

  17. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694

    Article  Google Scholar 

  18. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4 (2017). https://doi.org/10.1038/sdata.2017.117

  19. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection, July 2017. https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q

  20. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection, July 2017. https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF

  21. Cox, R., et al.: A (sort of) new image data format standard: NiFTI-1, vol. 22, January 2004

    Google Scholar 

  22. Consortium, M.: MONAI: Medical open network for AI, March 2020. https://doi.org/10.5281/zenodo.4323058, https://github.com/Project-MONAI/MONAI

  23. Liu, C., et al.: Auto-DeepLab: hierarchical neural architecture search for semantic image segmentation (2019)

    Google Scholar 

  24. Qiu, Z., Yao, T., Mei, T.: Learning spatio-temporal representation with pseudo-3D residual networks (2017)

    Google Scholar 

  25. Ulyanov, D., Vedaldi, A., Lempitsky, V.S.: Instance normalization: the missing ingredient for fast stylization. CoRR abs/1607.08022 (2016). http://arxiv.org/abs/1607.08022

  26. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

  27. Micikevicius, P., et al.: Mixed precision training (2018)

    Google Scholar 

  28. Howard, A., et al.: Searching for MobileNetV3 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Milesi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Milesi, A., Futrega, M., Marcinkiewicz, M., Ribalta, P. (2022). Brain Tumor Segmentation Using Neural Network Topology Search. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2021. Lecture Notes in Computer Science, vol 12962. Springer, Cham. https://doi.org/10.1007/978-3-031-08999-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08999-2_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08998-5

  • Online ISBN: 978-3-031-08999-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics