Skin Cancer Classification Using Different Backbones of Convolutional Neural Networks | SpringerLink
Skip to main content

Skin Cancer Classification Using Different Backbones of Convolutional Neural Networks

  • Conference paper
  • First Online:
Advances and Trends in Artificial Intelligence. Theory and Practices in Artificial Intelligence (IEA/AIE 2022)

Abstract

Melanoma is the deadliest of many different types of skin cancer. Clinical screening is followed by dermoscopic analysis and histopathological examination in the diagnosis of melanoma. Melanoma is a type of skin cancer that is highly curable if caught early. A visual examination of the affected area of the skin is the first step in melanoma skin cancer diagnosis. Dermatologists use a high-speed camera to take dermatoscopic images of skin lesions, which have an accuracy of 65–80% in melanoma diagnosis without any additional technical support. This research shows how to classify skin cancer using skin lesion photos using an automated classification approach based on image processing techniques. By studying images of skin lesions, the classification system will be able to determine whether or not a patient has melanoma. The contribution of this paper includes testing many different backbones and input sizes on the CNN models to evaluate the accuracy of the model on the siim-isic dataset. The overall prediction rate of melanoma diagnosis was raised to 82–86% on Sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 17159
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Carvajal, R.D., Marghoob, A., Kaushal, A., et al.: Melanoma and Other Skin Cancers. Cancer Network (2015) https://www.cancernetwork.com/view/melanoma-and-other-skin-cancers

  2. Habuza, T., Navaz, A., Hashim, F., et al.: AI applications in robotics, diagnostic image analysis and precision medicine: current limitations, future trends, guidelines on CAD systems for medicine. Informatics in Medicine Unlocked 24, 100596 (2021). https://doi.org/10.1016/j.imu.2021.100596

    Article  Google Scholar 

  3. Yu, K.H., Beam, A., Kohane, I.: Artificial intelligence in healthcare. Nature Biomedical Eng. 2, 719–731 (2018)

    Article  Google Scholar 

  4. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. The MIT Press (2016)

    Google Scholar 

  5. Huynh, A., Nguyen, B.T., Nguyen, H.T, et al.: A method of Deep Reinforcement Learning for Simulated Autonomous Vehicle Control. In: Proceedings of 16th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2021), Online streaming (2021).

    Google Scholar 

  6. Nguyen, H.D., Huynh, T., Hoang, S., Pham, V., Zelinka, I.: Language-oriented Sentiment Analysis based on the grammar structure and improved Self-attention network. In: Proceedings of 15th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2020), Prague, Czech Public (2020)

    Google Scholar 

  7. Duong, D., Le, Q., Nguyen-Tai, T.L., et al.: An effective AQI estimation using sensor data and stacking mechanism. In: Proceedings of 20th International Conference on Intelligent Software Methodologies, Tools, and Techniques (SOMET 2021), Cancun, Mexico. FAIA 337, pp. 405418 (2021) IOS Press

    Google Scholar 

  8. Phan, T., Pham, V., Nguyen, H., et al.: Ontology-based resume searching system for job applicants in information technology. In: Proceedings of 34th International Conference on Industrial, Engineering & Other Applications of Applied Intelligent Systems (IEA/AIE 2021), Kuala Lumpur, Malaysia. LNAI 12798, pp. 261 – 273 (2021). Springer

    Google Scholar 

  9. Nguyen, D., Nguyen, T., Vu, H., et al.: TATL: task agnostic transfer learning for skin attributes detection. Med. Image Anal. 78, 102359 (2022)

    Article  Google Scholar 

  10. Nguyen, H., Sakama, C.: Feature learning by least generalization. In: Proceedings of the 30th International Conference on Inductive Logic Programming (ILP 2021), Online streaming. LNCS, vol. 13191, pp. 193202 (2021). Springer, Cham

    Google Scholar 

  11. Pham, V., Nguyen, H., Pham, B., et al.: Robust engineering-based unified biomedical imaging framework for liver tumor segmentation. Current Medical Imaging (2022). https://doi.org/10.2174/1573405617666210804151024

  12. Pham, T.C., Doucet, A., Luong, C.M., et al.: Improving skin-disease classification based on customized loss function combined with balanced mini-batch logic and real-time image augmentation. IEEE Access 8, 150725–150737 (2020)

    Article  Google Scholar 

  13. Nguyen, H., Tran, V., Pham, V., et al.: Design a learning model of mobile vision to detect diabetic retinopathy based on the improvement of MobileNetV2. Int. J. Digit. Enterp. Technol. (IJDET) 2(1), 38–53 (2022)

    Google Scholar 

  14. Pham, T.C., Luong, C.M., Hoang, V.D., Doucet, A.: AI outperformed every dermatologist: Improved dermoscopic melanoma diagnosis through customizing batch logic and loss function in an optimized deep CNN architecture. Scientific Reports 11, 17485 (2021)

    Google Scholar 

  15. Ha, Q., Liu, B., Liu, F.: Identifying Melanoma Images using EfficientNet Ensemble: Winning Solution to the SIIM-ISIC Melanoma Classification Challenge (2020). https://arxiv.org/pdf/2010.05351v1.pdf

  16. Zhang, Y., Wang, C.: SIIM-ISIC melanoma classification with DenseNet. In: Proceedings of the IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE 2021), pp. 1417, Nanchang, China (2021). https://doi.org/10.1109/ICBAIE52039.2021.9389983

  17. Reis, H.C., Turk, V., Khoshelham, K., Kaya, S.: InSiNet: a deep convolutional approach to skin cancer detection and segmentation. Med Biol Eng Comput 60(3), 643–662 (2022)

    Google Scholar 

  18. Le, T.H.V., Van, H.T., Tran, H.S., Nguyen, P.K., Nguyen, T.T., Le, T.H.: Applying convolutional neural network for detecting highlight football events. In: Cong Vinh, P., Rakib, A. (eds.) ICCASA 2021. LNICSSITE, vol. 409, pp. 300–313. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-93179-7_23

    Chapter  Google Scholar 

  19. Lin, T., Goyal, P., Girshick, R., et al.: Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 318–327 (2020)

    Article  Google Scholar 

  20. Rotemberg, V., Kurtansky, N., Betz-Stablein, B., et al.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Sci Data 8, 34 (2021). https://doi.org/10.1038/s41597-021-00815-z

    Article  Google Scholar 

  21. Codella, N., Gutman, D., Celebi, M., et al.: Skin lesion analysis toward melanoma detection: a challenge at the 2017 International Symposium on Biomedical Imaging (ISBI), Hosted by the International Skin Imaging Collaboration (ISIC). In: Proceedings of IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), Washington DC, USA (2018)

    Google Scholar 

  22. Combalia, M., Codella, N., Rotemberg, V., et al.: BCN20000: Dermoscopic Lesions in the Wild. (2019) https://core.ac.uk/download/pdf/286456448.pdf

  23. Tschandl, P., Rosendahl, C., Kittler, H.: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5, 180161 (2018). https://doi.org/10.1038/sdata.2018.161

    Article  Google Scholar 

  24. Olivas, E., Guerrero, J., Sober, M., et al.: Handbook Of Research On Machine Learning Applications and Trends. Information Science Reference (2009)

    Google Scholar 

  25. Gollapudi, S.: Deep learning for computer vision. In: Learn Computer Vision Using OpenCV, pp. 51–69. Apress, Berkeley, CA (2019). https://doi.org/10.1007/978-1-4842-4261-2_3

    Chapter  Google Scholar 

  26. Nguyen, H.D., Do, N.V., Pham, V.T.: A method for designing knowledge-based systems and application. In: Elgnar, A., et al. (eds.) Applications Computational Intelligence Multi Disciplinary Research, Academic Press, Elsevier (2022)

    Google Scholar 

  27. Scarselli, F., Gori, M., Ah Chung, T., et al.: The graph neural network model. IEEE Trans. Neural Networks 20(1), 61–80 (2009)

    Article  Google Scholar 

Download references

Acknowledgment

This research is supported by the VNUHCM-University of Information Technology’s Scientific Research Support Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hien D. Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huynh, A.T., Hoang, VD., Vu, S., Le, T.T., Nguyen, H.D. (2022). Skin Cancer Classification Using Different Backbones of Convolutional Neural Networks. In: Fujita, H., Fournier-Viger, P., Ali, M., Wang, Y. (eds) Advances and Trends in Artificial Intelligence. Theory and Practices in Artificial Intelligence. IEA/AIE 2022. Lecture Notes in Computer Science(), vol 13343. Springer, Cham. https://doi.org/10.1007/978-3-031-08530-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08530-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08529-1

  • Online ISBN: 978-3-031-08530-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics