Towards Semantic Modeling and Simulation of Cybersecurity on the Internet of Underwater Things | SpringerLink
Skip to main content

Towards Semantic Modeling and Simulation of Cybersecurity on the Internet of Underwater Things

  • Conference paper
  • First Online:
Artificial Intelligence Applications and Innovations (AIAI 2022)

Abstract

As maritime and military missions become more and more complex over the years, there has been a high interest in the research and development of Unmanned Underwater Vehicles (UUVs). Latest efforts concern the modeling and simulation of UUVs collaboration within formations of vehicles (swarms), towards obtaining deeper insights related to critical issues related to cybersecurity and interoperability. The research issues which are constantly emerging in this domain are closely related to the communication, interoperability, and secure operation of trustworthy UUVs, as well as to the volume, velocity, variety, and veracity of data transmitted in low bitrate due to the medium i.e., the water. This paper focuses on such issues in the domain of UUVs, emphasizing interoperability and cybersecurity in swarms of trustworthy UUVs in a military/search-and-rescue (SAR) setting. The aim of this paper is to present preliminary work on a semantic modeling and simulation approach that aims to facilitate commanders of military/search-and-rescue operations to effectively support critical and life-saving decision-making, while handling interoperability and cybersecurity issues on the Internet of Underwater Things (IoUT).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 16015
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 20019
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 20019
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/KotisK/IoTontos.

  2. 2.

    https://github.com/KotisK/onto4drone.

  3. 3.

    https://github.com/KotisK/SEC4DigiT.

References

  1. Aggarwal, P., Gonzalez, C., Dutt, V.: HackIt: a real-time simulation tool for studying real-world cyberattacks in the laboratory. In: Gupta, B.B., Perez, G.M., Agrawal, D.P., Gupta, D. (eds.) Handbook of Computer Networks and Cyber Security, pp. 949–959. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-22277-2_39

    Chapter  Google Scholar 

  2. Ahmad, I., et al.: Analysis of security attacks and taxonomy in underwater wireless sensor networks. Wirel. Commun. Mob. Comput. 2021 (2021). https://doi.org/10.1155/2021/1444024

  3. Bagyalakshmi, G., et al.: Network vulnerability analysis on brain signal/image databases using Nmap and Wireshark tools. IEEE Access 6, 57144–57151 (2018). https://doi.org/10.1109/ACCESS.2018.2872775

    Article  Google Scholar 

  4. Barbie, A., et al.: Developing an underwater network of ocean observation systems with digital twin prototypes - a field report from Baltic sea. IEEE Internet Comput. (2021). https://doi.org/10.1109/MIC.2021.3065245

  5. Bhattacharjya, K., De, D.: IoUT: modelling and simulation of edge-drone-based software-defined smart internet of underwater things. Simul. Model. Pract. Theory 109, 102304 (2021). https://doi.org/10.1016/j.simpat.2021.102304

    Article  Google Scholar 

  6. Bouter, C., Kruiger, H., Verhoosel, J.: Domain-Independent Data Processing in an Ontology Based Data Access Environment Using the SOSA Ontology (2021). http://ceur-ws.org

  7. Caldera Description page. https://www.pwc.co.uk/issues/imitation-game-attacker-emulation.html. Accessed 06 Mar 2022

  8. Centelles, D., Soriano-Asensi, A., Martí, J.V., Marín, R., Sanz, P.J.: Underwater wireless communications for cooperative robotics with UWSim-NET. Appl. Sci. 9(17), 3526 (2019). https://doi.org/10.3390/app9173526

    Article  Google Scholar 

  9. Chhokra, A., Barreto, C., Dubey, A., Karsai, G., Koutsoukos, X.: Power-attack: a comprehensive tool-chain for modeling and simulating attacks in power systems (n.d.)

    Google Scholar 

  10. Cornejo-Lupa, M.A., Cardinale, Y., Ticona-Herrera, R., Barrios-Aranibar, D., Andrade, M., Diaz-Amado, J.: OntoSLAM: an ontology for representing location and simultaneous mapping information for autonomous robots. Robotics 10(4), 125 (2021). https://doi.org/10.3390/robotics10040125

    Article  Google Scholar 

  11. Domingo, M.C.: An overview of the internet of underwater things. J. Netw. Comput. Appl. 35(6), 1879–1890 (2012). https://doi.org/10.1016/j.jnca.2012.07.012

    Article  Google Scholar 

  12. Fattah, S., Gani, A., Ahmedy, I., Idris, M.Y.I., Hashem, I.A.T.: A survey on underwater wireless sensor networks: requirements, taxonomy, recent advances, and open research challenges. Sensors 20(18), 1–30 (2020). https://doi.org/10.3390/s20185393

    Article  Google Scholar 

  13. Gazebo Github page. https://github.com/osrf/gazebo. Accessed 06 Mar 2022

  14. Gazebo Homepage. http://gazebosim.org/. Accessed 06 Mar 2022

  15. Infection Monkey. https://github.com/guardicore/monkey. Accessed 06 Mar 2022

  16. Braga, J., Martins, R., Petrioli, C., Petroccia, R., Picari, L.: Cooperation and networking in an underwater network composed by heterogeneous assets. In: OCEANS 2016 MTS/IEEE Monterey, pp. 1–9 (2016). https://doi.org/10.1109/OCEANS.2016.7761219

  17. Janowicz, K., Haller, A., Cox, S.J.D., le Phuoc, D., Lefrançois, M.: SOSA: a lightweight ontology for sensors, observations, samples, and actuators. J. Web Semant. 56, 1–10 (2019). https://doi.org/10.1016/j.websem.2018.06.003

    Article  Google Scholar 

  18. Jurasky, W., Moder, P., Milde, M., Ehm, H., Reinhart, G.: Transformation of semantic knowledge into simulation-based decision support. Robot. Comput.-Integr. Manuf. 71, 102174 (2021). https://doi.org/10.1016/j.rcim.2021.102174

    Article  Google Scholar 

  19. Kamoun-Abid, F., Rekik, M., Meddeb-Makhlouf, A., Zarai, F.: Secure architecture for Cloud/Fog computing based on firewalls and controllers. Procedia Comput. Sci. 192, 822–833 (2021). https://doi.org/10.1016/j.procs.2021.08.085

    Article  Google Scholar 

  20. Kutzke, D.T., Carter, J.B., Hartman, B.T.: Subsystem selection for digital twin development: a case study on an unmanned underwater vehicle. Ocean Eng. 223, 108629 (2021). https://doi.org/10.1016/j.oceaneng.2021.108629

    Article  Google Scholar 

  21. LHN Infection Monkey page. https://latesthackingnews.com/2022/02/24/__trashed-4/. Accessed 06 Mar 2022

  22. LinkedIn page. https://www.linkedin.com/pulse/auv-deepwater-search-rescue-arnt-helge-olsen/. Accessed 06 Mar 2022

  23. Madan, B.B., Banik, M., Bein, D.: Securing unmanned autonomous systems from cyber threats. J. Defense Model. Simul. 16(2), 119–136 (2019). https://doi.org/10.1177/1548512916628335

    Article  Google Scholar 

  24. Mary, D.R.K., Ko, E., Kim, S.-G., Yum, S.-H., Shin, S.-Y., Park, S.-H.: A systematic review on recent trends, challenges, privacy and security issues of underwater internet of things. Sensors 21(24), 8262 (2021). https://doi.org/10.3390/s21248262

    Article  Google Scholar 

  25. Menaka, D., Gauni, S., Manimegalai, C.T., Kalimuthu, K.: Vision of IoUT: advances and future trends in optical wireless communication. J. Opt. 50 (n.d.). https://doi.org/10.1007/s12596

  26. Migueláñez, E., Patrón, P., Brown, K.E., Petillot, Y.R., Lane, D.M.: Semantic knowledge-based framework to improve the situation awareness of autonomous underwater vehicles. IEEE Trans. Knowl. Data Eng. 23(5), 759–773 (2011). https://doi.org/10.1109/TKDE.2010.46

    Article  Google Scholar 

  27. MITRE ATT&CK Description page for Caldera. https://www.mitre.org/research/technology-transfer/open-source-software/caldera%E2%84%A2. Accessed 06 Mar 2022

  28. MITRE ATT&CK Homepage. https://attack.mitre.org/. Accessed 06 Mar 2022

  29. Nayyar, A., Balas, V.E.: Analysis of simulation tools for underwater sensor networks (UWSNs). In: Bhattacharyya, S., Hassanien, A.E., Gupta, D., Khanna, A., Pan, I. (eds.) International Conference on Innovative Computing and Communications. LNNS, vol. 55, pp. 165–180. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-2324-9_17

    Chapter  Google Scholar 

  30. NS-3 Introduction page. https://www.nsnam.org/docs/release/3.21/tutorial/ html/introduction.html. Accessed 06 Mar 2022

  31. Oceanic Engineering Society (U.S.): Autonomous Underwater Vehicles 2016: AUV 2016: 6–9 November 2016, IIS, the University of Tokyo, Tokyo, Japan (n.d.)

    Google Scholar 

  32. Potter, J., Alves, J., Green, D., Zappa, G., McCoy, K., Nissen, I.: The JANUS underwater communications standard. In: 2014 Underwater Communications and Networking, UComms 2014 (2014). https://doi.org/10.1109/UComms.2014.7017134

  33. Prats, M., Perez, J., Fernandez, J.J., Sanz, P.J.: An open-source tool for simulation and supervision of underwater intervention missions. In: IEEE International Conference on Intelligent Robots and Systems, pp. 2577–2582 (2012). https://doi.org/10.1109/IROS.2012.6385788

  34. Public Affairs Office: NATO STO-CMRE Science and Technology Organization Centre for Maritime Research and Experimentation (2020)

    Google Scholar 

  35. Syed, R.: Cybersecurity vulnerability management: a conceptual ontology and cyber intelligence alert system. Inf. Manag. 57(6), 103334 (2020). https://doi.org/10.1016/j.im.2020.103334

    Article  Google Scholar 

  36. Syed, Z., Padia, A., Finin, T., Mathews, L., Joshi, A.: UCO: A Unified Cybersecurity Ontology (n.d.). http://tinyurl.com/ptqkzpq

  37. Velu, A., Thangavelu, M.: Ontology based ocean knowledge representation for semantic information retrieval. Comput. Mater. Contin. 70(3), 4707–4724 (2022). https://doi.org/10.32604/cmc.2022.020095

  38. Wikipedia page. https://en.wikipedia.org/wiki/Air_France_Flight_447#Underwater_search. Accessed 06 Mar 2022

  39. Wikipedia page for ARP spoofing. https://en.wikipedia.org/wiki/ARP_spoofing. Accessed 06 Mar 2022

  40. Wireshark Home page. https://www.wireshark.org/docs/. Accessed 06 Mar 2022

  41. Wu, J., Yang, Y., Cheng, X.U.N., Zuo, H., Cheng, Z.: The development of digital twin technology review. In: Proceedings - 2020 Chinese Automation Congress, CAC 2020, pp. 4901–4906 (2020). https://doi.org/10.1109/CAC51589.2020.9327756.

  42. Zachila, K., Kotis, K., Paparidis, E., Ladikou, S., Spiliotopoulos, D.: Facilitating semantic interoperability of trustworthy IoT entities in cultural spaces: the smart museum ontology. IoT 2(4), 741–760 (2021). https://doi.org/10.3390/iot2040037

    Article  Google Scholar 

  43. Zhao, Y., Wang, Y., Zhang, H., Zhang, C., Yang, C.: Agent-based Network Security Simulator Nessi2 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Kotis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stavrinos, S., Kotis, K., Kalloniatis, C. (2022). Towards Semantic Modeling and Simulation of Cybersecurity on the Internet of Underwater Things. In: Maglogiannis, I., Iliadis, L., Macintyre, J., Cortez, P. (eds) Artificial Intelligence Applications and Innovations. AIAI 2022. IFIP Advances in Information and Communication Technology, vol 646. Springer, Cham. https://doi.org/10.1007/978-3-031-08333-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08333-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08332-7

  • Online ISBN: 978-3-031-08333-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics