Abstract
Sentiment Analysis (SA) or opinion mining has become one of the essential research fields whose application is clearly visible in a large variety of domains. Due to Arabic structure complexities at the level of morphology, orthography, and dialects, manual feature extraction is a time-consuming and challenging mission, Besides, Arabic Sentiment analysis (ASA) is very difficult and is considered a more difficult task compared to other languages.
In this paper, we discuss the issue of word embedding models that is very important in the field of Arabic Sentiment Analysis also provide a comparative analysis of the most famous word embedding models namely: Word2Vec, Glove, FastText, Elmo, and Bert. We found through this deep evaluation, that FaxtText, Elmo, and Bert embedding models outperform other Models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Altowayan, A.A., Tao, L.: Word embeddings for Arabic sentiment analysis. In: Proceedings - 2016 IEEE International Conference on Big Data, Big Data 2016, pp. 3820–3825 (2016)
Zahidi, Y., El Younoussi, Y., Al-Amrani, Y.: Different valuable tools for Arabic sentiment analysis: a comparative evaluation. Int. J. Electr. Comput. Eng. 11(1), 753–762 (2021)
Zahidi, Y., El Younoussi, Y., Al-Amrani, Y.: A powerful comparison of deep learning frameworks for Arabic sentiment analysis. Int. J. Electr. Comput. Eng. 11(1), 745–752 (2021)
Al Amrani, Y., Lazaar, M., El Kadiri, K.E.: Recovery of the opinions through the specificities of documents text. In: 2019 International Conference on Wireless Technologies, Embedded and Intelligent Systems, WITS 2019 (2019)
Al Amrani, Y., Lazaar, M., El Kadiri, K.E.: A novel hybrid classification approach for sentiment analysis of text document. Int. J. Electr. Comput. Eng. 8(6), 4554-4567 (2018)
Ashi, M.M., Siddiqui, M.A., Nadeem, F.: Pre-trained word embeddings for Arabic aspect-based sentiment analysis of airline tweets. In: Hassanien, A.E., Tolba, M.F., Shaalan, K., Azar, A.T. (eds.) AISI 2018. AISC, vol. 845, pp. 241–251. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-99010-1_22
Abdulla, N.A., Ahmed, N.A., Shehab, M.A., Al-Ayyoub, M.: Arabic sentiment analysis: Lexicon-based and corpus-based. In: 2013 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies, AEECT 2013 (2013)
Sayadi, K., Liwicki, M., Ingold, R., Bui, M.: Tunisian dialect and modern standard arabic dataset for sentiment analysis: Tunisian election context. Proc. 17th Int. Conf. Intell. Text Process. Arab. Comput. Linguist., no. March 2014 (2016)
Alomari, K.M., ElSherif, H.M., Shaalan, K.: Arabic tweets sentimental analysis using machine learning. In: Benferhat, S., Tabia, K., Ali, M. (eds.) IEA/AIE 2017. LNCS (LNAI), vol. 10350, pp. 602–610. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60042-0_66
Elouardighi, A., Maghfour, M., Hammia, H., Aazi, F.Z.: A machine Learning approach for sentiment analysis in the standard or dialectal Arabic Facebook comments. In: Proceedings of 2017 International Conference of Cloud Computing Technologies and Applications, CloudTech 2017, vol. 2018-Janua, pp. 1–8 (2018)
Nadia, K.: Tunisian Arabic Customer’s Reviews Processing and Analysis for an Internet Supervision System. PhD dissertation, Sfax University, Tunisia (2017)
Nabil, M., Aly, M., Atiya, A.F.: ASTD: Arabic sentiment tweets dataset. In: Conference Proceedings - EMNLP 2015: Conference on Empirical Methods in Natural Language Processing, pp. 2515–2519 (2015)
Mourad, A., Darwish, K.: Subjectivity and sentiment analysis of modern standard Arabic and Arabic Microblogs. In: Proceedings of the 4th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pp. 55–64 (2013)
Aly, M., Atiya, A.: LABR: A Large Scale Arabic Book Reviews Dataset. (2013)
Banea, C., Mihalcea, R.: Multilingual Subjectivity : Are More Languages Better ? no. August, pp. 28–36 (2010)
Dahou, A., Xiong, S., Zhou, J., Haddoud, M.H., Duan, P.: Word Embeddings and Convolutional Neural Network for Arabic Sentiment Classification (2016)
Gridach, M., Haddad, H., Mulki, H.: Empirical Evaluation of Word Representations on Arabic Sentiment Analysis (2017)
Rosenthal, S., Farra, N., Nakov, P.: SemEval-2017 Task 4: Sentiment analysis in Twitter. In: Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), pp. 502–518 (2017)
El-Beltagy, S.R., El kalamawy, M., Soliman, A.B.: NileTMRG at SemEval-2017 Task 4: Arabic Sentiment Analysis. In: Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), pp. 790–795 (2017)
Medhaffar, S., Bougares, F., Estève, Y., Hadrich-Belguith, L.: Sentiment analysis of tunisian dialects: linguistic ressources and experiments. In: Proceedings of the Third Arabic Natural Language Processing Workshop, pp. 55–61 (2017)
Rushdi-Saleh, M., Martín-Valdivia, M.T., Ureña-López, L.A., Perea-Ortega, J.M.: OCA: Opinion corpus for Arabic. Journal of the American Society for Information Science and Technology, John Wiley & Sons, Ltd, pp. 2045–2054 (2011)
Al-Azani, S., El-Alfy, E.S.M.: Hybrid deep learning for sentiment polarity determination of Arabic Microblogs. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10635 LNCS, pp. 491–500 (2017)
Ashi, M.M., Siddiqui, M.A., Nadeem, F.: Pre-trained Word Embeddings for Arabic Aspect-Based Sentiment Analysis of Airline Tweets Pre-trained Word Embeddings for Arabic Aspect-Based Sentiment Analysis of Airline Tweets (2018)
Kaibi, I., Nfaoui, E.H.: A comparative evaluation of word embeddings techniques for twitter sentiment analysis. In: 2019 International Conference Wireless Technololgy Embedded Intelligent System, pp. 1–4 (2019)
Kaibi, I., Nfaoui, E.H., Satori, H.: Sentiment analysis approach based on combination of word embedding techniques. In: Bhateja, V., Satapathy, S.C., Satori, H. (eds.) Embedded Systems and Artificial Intelligence. AISC, vol. 1076, pp. 805–813. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-0947-6_76
Messaoudi, A., Haddad, H., Hajhmida, B., Fourati, C., Ben Hamida, A.: Learning Word Representations for Tunisian Sentiment Analysis (2020)
Talafha, B., Al-Ayyoub, M., Abuammar, A., Jararweh, Y.: Outperforming state-of-the-art systems for aspect-based sentiment analysis. In: Proceedings of IEEE/ACS International Conference on Computer Systems and Applications, AICCSA, vol. 2019-Novem, pp. 1–5 (2019)
Mohammadi, E., Amini, H., Kosseim, L.: Neural feature extraction for contextual emotion detection. In: Proceedings of the International Conference on Recent Advances in Natural Language Processing, RANLP, pp. 785–794 (2019)
Barhoumi, A., Camelin, N., Aloulou, C., Estève, Y., Hadrich Belguith, L.: An Empirical Evaluation of Arabic-Specific Embeddings for Sentiment Analysis, pp. 34–48 (2019)
Zhang, C., Abdul-Mageed, M.: BERT-Based Arabic Social Media Author Profiling (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zahidi, Y., El Younoussi, Y., Al-Amrani, Y. (2022). An Overview of Word Embedding Models Evaluation for Arabic Sentiment Analysis. In: Lazaar, M., Duvallet, C., Touhafi, A., Al Achhab, M. (eds) Proceedings of the 5th International Conference on Big Data and Internet of Things. BDIoT 2021. Lecture Notes in Networks and Systems, vol 489. Springer, Cham. https://doi.org/10.1007/978-3-031-07969-6_31
Download citation
DOI: https://doi.org/10.1007/978-3-031-07969-6_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-07968-9
Online ISBN: 978-3-031-07969-6
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)