Using Edge Contractions and Vertex Deletions to Reduce the Independence Number and the Clique Number | SpringerLink
Skip to main content

Using Edge Contractions and Vertex Deletions to Reduce the Independence Number and the Clique Number

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13270))

Included in the following conference series:

  • 579 Accesses

Abstract

We consider the following problem: for a given graph G and two integers k and d, can we apply a fixed graph operation at most k times in order to reduce a given graph parameter \(\pi \) by at least d? We show that this problem is NP-hard when the parameter is the independence number and the graph operation is vertex deletion or edge contraction, even for fixed \(d=1\) and when restricted to chordal graphs. We also give a polynomial time algorithm for bipartite graphs when the operation is edge contraction, the parameter is the independence number and d is fixed. Further, we complete the complexity dichotomy on H-free graphs when the parameter is the clique number and the operation is edge contraction by showing that this problem is NP-hard in \((C_3+P_1)\)-free graphs even for fixed \(d=1\). Our results answer several open questions stated in [Diner et al., Theoretical Computer Science, 746, p. 49–72 (2012)].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows - Theory, Algorithms and Applications, pp. 461–509. Prentice Hall, New Jersey (1993)

    Google Scholar 

  2. Bentz, C., Costa, M.C., de Werra, D., Picouleau, C., Ries, B.: Minimum d-transversals of maximum-weight stable sets in trees. Electron. Notes Discrete Math. 38, 129–134 (2011). https://doi.org/10.1016/j.endm.2011.09.022. The Sixth European Conference on Combinatorics, Graph Theory and Applications, EuroComb 2011

  3. Cerioli, M.R., Lima, P.T.: Intersection of longest paths in graph classes. Discrete Appl. Math. 281, 96–105 (2020). https://doi.org/10.1016/j.dam.2019.03.022. lAGOS 2017: IX Latin and American Algorithms, Graphs and Optimization Symposium, C.I.R.M., Marseille, France (2017)

  4. Diestel, R.: Graph Theory, p. 37. Springer, Heidelberg (2016)

    Google Scholar 

  5. Diner, Ö.Y., Paulusma, D., Picouleau, C., Ries, B.: Contraction and deletion blockers for perfect graphs and H-free graphs. Theoret. Comput. Sci. 746, 49–72 (2018). https://doi.org/10.1016/j.tcs.2018.06.023

    Article  MathSciNet  MATH  Google Scholar 

  6. Galby, E., Mann, F., Ries, B.: Blocking total dominating sets via edge contractions. Theoret. Comput. Sci. 877, 18–35 (2021). https://doi.org/10.1016/j.tcs.2021.03.028

    Article  MathSciNet  MATH  Google Scholar 

  7. Galby, E., Mann, F., Ries, B.: Reducing the domination number of (p3+kp2)-free graphs via one edge contraction. Discrete Appl. Math. 305, 205–210 (2021). https://doi.org/10.1016/j.dam.2021.09.009

    Article  MathSciNet  MATH  Google Scholar 

  8. Galby, E., Lima, P.T., Mann, F., Ries, B.: Using edge contractions to reduce the semitotal domination number (2021). 10.48550/ARXIV.2107.03755. https://arxiv.org/abs/2107.03755

  9. Gavril, F.: Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximum independent set of a chordal graph. SIAM J. Comput. 1(2), 180–187 (1972). https://doi.org/10.1137/0201013

    Article  MathSciNet  MATH  Google Scholar 

  10. Paik, D., Reddy, S., Sahni, S.: Deleting vertices to bound path length. IEEE Trans. Comput. 43(9), 1091–1096 (1994). https://doi.org/10.1109/12.312117

    Article  MathSciNet  MATH  Google Scholar 

  11. Paulusma, D., Picouleau, C., Ries, B.: Reducing the clique and chromatic number via edge contractions and vertex deletions. In: Cerulli, R., Fujishige, S., Mahjoub, A.R. (eds.) ISCO 2016. LNCS, vol. 9849, pp. 38–49. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45587-7_4

    Chapter  Google Scholar 

  12. Picouleau, C., Paulusma, D., Ries, B.: Reducing the chromatic number by vertex or edge deletions. Electron. Notes Discrete Math. 62, 243–248 (2017). https://doi.org/10.1016/j.endm.2017.10.042. lAGOS 2017 - IX Latin and American Algorithms, Graphs and Optimization

  13. Poljak, S.: A note on stable sets and colorings of graphs. Commentationes Mathematicae Universitatis Carolinae 15(2), 307–309 (1974)

    MathSciNet  MATH  Google Scholar 

  14. Zenklusen, R., Ries, B., Picouleau, C., de Werra, D., Costa, M.C., Bentz, C.: Blockers and transversals. Discrete Math. 309(13), 4306–4314 (2009). https://doi.org/10.1016/j.disc.2009.01.006

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Mann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lucke, F., Mann, F. (2022). Using Edge Contractions and Vertex Deletions to Reduce the Independence Number and the Clique Number. In: Bazgan, C., Fernau, H. (eds) Combinatorial Algorithms. IWOCA 2022. Lecture Notes in Computer Science, vol 13270. Springer, Cham. https://doi.org/10.1007/978-3-031-06678-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06678-8_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06677-1

  • Online ISBN: 978-3-031-06678-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics