Investigating One-Class Classifiers to Diagnose Alzheimer’s Disease from Handwriting | SpringerLink
Skip to main content

Investigating One-Class Classifiers to Diagnose Alzheimer’s Disease from Handwriting

  • Conference paper
  • First Online:
Image Analysis and Processing – ICIAP 2022 (ICIAP 2022)

Abstract

The analysis of handwriting and drawing has been adopted since the early studies to help diagnose neurodegenerative diseases, such as Alzheimer’s and Parkinson’s. Departing from the current state-of-the-art methods that approach the problem of discriminating between healthy subjects and patients by using two- or multi-class classifiers, we propose to adopt one-class classifier models, as they require only data by healthy subjects to build the classifier, thus avoiding to collect patient data, as requested by competing techniques. In this framework, we evaluated the performance of three models of one-class classifiers, namely the Negative Selection Algorithm, the Isolation Forest and the One-Class Support Vector Machine, on the DARWIN dataset, which includes 174 subjects performing 25 handwriting/drawing tasks. The comparison with the state-of-the-art shows that the methods achieve state-of-the-art performance, and therefore may represent a viable alternative to the dominant approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ba-Karait, N.O., Shamsuddin, S.M., Sudirman, R.: Eeg signals classification using a hybrid method based on negative selection and particle swarm optimization. In: Proceedings of the 8th International Conference on Machine Learning and Data Mining in Pattern Recognition, pp. 427–438 (2012)

    Google Scholar 

  2. Broderick, M.P., Van Gemmert, A.W., Shill, H.A., Stelmach, G.E.: Hypometria and bradykinesia during drawing movements in individuals with Parkinson’s disease. Exp. Brain Res. 197(3), 223–233 (2009)

    Article  Google Scholar 

  3. Cavaliere, F., Della Cioppa, A., Marcelli, A., Parziale, A., Senatore, R.: Parkinson’s disease diagnosis: towards grammar-based explainable artificial intelligence. In: 2020 IEEE Symposium on Computers and Communications (ISCC), pp. 1–6 (2020)

    Google Scholar 

  4. Cilia, N.D., D’Alessandro, T., De Stefano, C., Fontanella, F., Molinara, M.: From online handwriting to synthetic images for Alzheimer’s disease detection using a deep transfer learning approach. IEEE J. Biomed. Health Inform. 25(12), 4243–4254 (2021)

    Article  Google Scholar 

  5. Cilia, N.D., De Gregorio, G., De Stefano, C., Fontanella, F., Marcelli, A., Parziale, A.: Diagnosing Alzheimer’s disease from on-line handwriting: a novel dataset and performance benchmarking. Eng. Appl. Artif. Intell. 111, 104822 (2022). https://doi.org/10.1016/j.engappai.2022.104822

  6. Cilia, N.D., De Stefano, C., Fontanella, F., Di Freca, A.S.: An experimental protocol to support cognitive impairment diagnosis by using handwriting analysis. Procedia Comput. Sci. 141, 466–471 (2018)

    Article  Google Scholar 

  7. Cilia, N.D., De Stefano, C., Fontanella, F., Molinara, M., Scotto Di Freca, A.: Using handwriting features to characterize cognitive impairment. In: Ricci, E., Rota Bulò, S., Snoek, C., Lanz, O., Messelodi, S., Sebe, N. (eds.) ICIAP 2019. LNCS, vol. 11752, pp. 683–693. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30645-8_62

    Chapter  Google Scholar 

  8. Cohen, G., Hilario, M., Sax, H., Hugonnet, S., Pellegrini, C., Geissbuhler, A.: An application of one-class support vector machines to nosocomial infection detection. In: MEDINFO 2004, pp. 716–720. IOS Press (2004)

    Google Scholar 

  9. De Gregorio, G., Desiato, D., Marcelli, A., Polese, G.: A multi classifier approach for supporting Alzheimer’s diagnosis based on handwriting analysis. In: Del Bimbo, A., et al. (eds.) ICPR 2021. LNCS, vol. 12661, pp. 559–574. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68763-2_43

  10. De Stefano, C., Fontanella, F., Impedovo, D., Pirlo, G., di Freca, A.S.: Handwriting analysis to support neurodegenerative diseases diagnosis: a review. Pattern Recogn. Lett. 121, 37–45 (2019)

    Article  Google Scholar 

  11. Drotár, P., Mekyska, J., Rektorová, I., Masarová, L., Smékal, Z., Faundez-Zanuy, M.: Evaluation of handwriting kinematics and pressure for differential diagnosis of Parkinson’s disease. Artif. Intell. Med. 67, 39–46 (2016)

    Article  Google Scholar 

  12. Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.: Self-nonself discrimination in a computer. In: Proceedings of 1994 IEEE Computer Society Symposium on Research in Security and Privacy, pp. 202–212 (1994)

    Google Scholar 

  13. Gautier, S., Rosa-Neto, P., Morais, J.a., Webster, C.: World Alzheimer Report 2021: Journey through the diagnosis of dementia. ADI, London, UK (2021)

    Google Scholar 

  14. Gonzalez, F., Dasgupta, D., Kozma, R.: Combining negative selection and classification techniques for anomaly detection. In: Proceedings of the 2002 Congress on Evolutionary Computation. CEC 2002, vol. 1, pp. 705–710 (2002)

    Google Scholar 

  15. Guo, L., Zhao, L., Wu, Y., Li, Y., Xu, G., Yan, Q.: Tumor detection in MR images using one-class immune feature weighted SVMs. IEEE Trans. Magn. 47(10), 3849–3852 (2011)

    Article  Google Scholar 

  16. Gupta, K.D., Dasgupta, D.: Negative selection algorithm research and applications in the last decade: a review (2021)

    Google Scholar 

  17. Huang, S.H.: Supervised feature selection: a tutorial. Artif. Intell. Res. 4(2), 22–37 (2015)

    Article  Google Scholar 

  18. Impedovo, D., Pirlo, G., Vessio, G.: Dynamic handwriting analysis for supporting earlier Parkinson’s disease diagnosis. Information 9(10), 247 (2018)

    Article  Google Scholar 

  19. Jankovic, J.: Parkinson’s disease: clinical features and diagnosis. J. Neurol. Neurosur. Psychiatry 79(4), 368–376 (2008)

    Article  Google Scholar 

  20. Ji, Z., Dasgupta, D.: V-detector: an efficient negative selection algorithm with “probably adequate’’ detector coverage. Inf. Sci. 179(10), 1390–1406 (2009)

    Article  Google Scholar 

  21. Lasisi, A., Ghazali, R., Herawan, T.: Chapter 11 - application of real-valued negative selection algorithm to improve medical diagnosis. In: Al-Jumeily, D., Hussain, A., Mallucci, C., Oliver, C. (eds.) Applied Computing in Medicine and Health, pp. 231–243. Morgan Kaufmann, Boston (2016)

    Chapter  Google Scholar 

  22. Le, W., Dong, J., Li, S., Korczyn, A.D.: Can biomarkers help the early diagnosis of Parkinson’s disease? Neurosci. Bull. 33(5), 535–542 (2017)

    Article  Google Scholar 

  23. Li, T., Le, W.: Biomarkers for Parkinson’s disease: how good are they? Neurosci. Bull. 36(2), 183–194 (2020)

    Article  Google Scholar 

  24. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation-based anomaly detection. ACM Trans. Knowl. Discovery Data (TKDD) 6(1), 1–39 (2012)

    Article  Google Scholar 

  25. Myszczynska, M.A., et al.: Applications of machine learning to diagnosis and treatment of neurodegenerative diseases. Nat. Rev. Neurol. 16, 440–456 (2020)

    Article  Google Scholar 

  26. Parziale, A., Senatore, R., Della Cioppa, A., Marcelli, A.: Cartesian genetic programming for diagnosis of Parkinson disease through handwriting analysis: performance vs interpretability issues. Artif. Intell. Med. 111, 101984 (2021)

    Article  Google Scholar 

  27. Parziale, A., Della Cioppa, A., Senatore, R., Marcelli, A.: A decision tree for automatic diagnosis of Parkinson’s disease from offline drawing samples: experiments and findings. In: Ricci, E., et al. (eds.) Image Analysis and Processing - ICIAP 2019, pp. 196–206 (2019)

    Google Scholar 

  28. Parziale, A., Senatore, R., Marcelli, A.: Exploring speed-accuracy tradeoff in reaching movements: a neurocomputational model. Neural Comput. Appl. 32, 13377–13403 (2020)

    Google Scholar 

  29. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005)

    Article  Google Scholar 

  30. Pereira, C.R., Weber, S.A.T., Hook, C., Rosa, G.H., Papa, J.P.: Deep learning-aided Parkinson’s disease diagnosis from handwritten dynamics. In: 2016 29th Conference on Graphics, Patterns and Images, pp. 340–346, October 2016

    Google Scholar 

  31. Pereira, C.R., et al.: A new computer vision-based approach to aid the diagnosis of Parkinson’s disease. Comput. Methods Programs Biomed. 136, 79–88 (2016)

    Google Scholar 

  32. Precup, R.E., Teban, T.A., Albu, A., Borlea, A.B., Zamfirache, I.A., Petriu, E.M.: Evolving fuzzy models for prosthetic hand myoelectric-based control. IEEE Trans. Instrum. Meas. 69(7), 4625–4636 (2020)

    Article  Google Scholar 

  33. Prince, M., Wimo, A., Guercet, M., Ali, G.C., Wu, Y.T., Prina, M.: World Alzheimer Report 2015: The Global Impact of Dementia. ADI, London, UK (2015)

    Google Scholar 

  34. Schölkopf, B., Williamson, R.C., Smola, A.J., Shawe-Taylor, J., Platt, J.C., et al.: Support vector method for novelty detection. In: NIPS, vol. 12, pp. 582–588. Citeseer (1999)

    Google Scholar 

  35. Senatore, R., Marcelli, A.: A neural scheme for procedural motor learning of handwriting. In: International Conference on Frontiers on Handwriting Recognition, pp. 659–664. Springer (2012)

    Google Scholar 

  36. Senatore, R., Marcelli, A.: A paradigm for emulating the early learning stage of handwriting: performance comparison between healthy controls and Parkinson’s disease patients in drawing loop shapes. Hum. Mov. Sci. 65, 89–101 (2019)

    Google Scholar 

  37. Tanveer, M., et al.: Machine learning techniques for the diagnosis of Alzheimer’s disease: a review. ACM Trans. Multimedia Comput. Commun. Appl. 16(1s), 1–35 (2020)

    Google Scholar 

  38. Teulings, H.L., Contreras-Vidal, J.L., Stelmach, G.E., Adler, C.H.: Parkinsonism reduces coordination of fingers, wrist, and arm in fine motor control. Exp. Neurol. 146(1), 159–170 (1997)

    Article  Google Scholar 

  39. Teulings, H.L., Stelmach, G.E.: Control of stroke size, peak acceleration, and stroke duration in parkinsonian handwriting. Human Mov. Sci. 10(2–3), 315–334 (1991)

    Article  Google Scholar 

  40. Van Gemmert, A., Adler, C.H., Stelmach, G.: Parkinson’s disease patients undershoot target size in handwriting and similar tasks. J. Neurol. Neurosur. Psychiatry 74(11), 1502–1508 (2003)

    Google Scholar 

  41. Vessio, G.: Dynamic handwriting analysis for neurodegenerative disease assessment: a literary review. Appl. Sci. 9(21), 4666 (2019)

    Google Scholar 

  42. Zhang, J., Ma, K.K., Er, M.H., Chong, V.: Tumor segmentation from magnetic resonance imaging by learning via one-class support vector machine. In: International Workshop on Advanced Image Technology, pp. 207–211 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Parziale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Parziale, A., Della Cioppa, A., Marcelli, A. (2022). Investigating One-Class Classifiers to Diagnose Alzheimer’s Disease from Handwriting. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds) Image Analysis and Processing – ICIAP 2022. ICIAP 2022. Lecture Notes in Computer Science, vol 13231. Springer, Cham. https://doi.org/10.1007/978-3-031-06427-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06427-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06426-5

  • Online ISBN: 978-3-031-06427-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics