Abstract
This article seeks to propose a framework and corresponding paradigm for evaluating explanations provided by explainable artificial intelligence (XAI). The article argues for the need for evaluation paradigms – different people performing different tasks in different contexts will react differently to different explanations. It reviews previous research evaluating XAI explanations while also identifying the main contribution of this work – a flexible paradigm researchers can use to evaluate XAI models, rather than a list of factors. The article then outlines a framework which offers causal relationships between five key factors – mental models, probability estimates, trust, knowledge, and performance. It then outlines a paradigm consisting of a training, testing and evaluation phase. The work is discussed in relation to predictive models, guidelines for XAI developers, and adaptive explainable artificial intelligence - a recommender system capable of predicting what the preferred explanations would be for a specific domain-expert on a particular task.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Shahroudnejad, A.: A survey on understanding, visualizations, and explanation of deep neural networks. arXiv preprint arXiv:2102.01792 (2021)
Miller, T.: “ But why?” Understanding explainable artificial intelligence. XRDS: crossroads. ACM Mag. Stud. 25(3), 20–25 (2019)
Molnar, C.: Interpretable Machine Learning. Lulu. Com. (2020)
Gunning, D., Aha, D.: DARPA’s explainable artificial intelligence (XAI) program. AI Mag. 40(2), 44–58 (2019)
Bhatt, U., et al.: Explainable machine learning in deployment. In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparenc, pp. 648–657 (2020)
Lundberg, S.M., et al.: From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2(1), 56–67 (2020)
Lee, E., Braines, D., Stiffler, M., Hudler, A., Harborne, D.: Developing the sensitivity of LIME for better machine learning explanation. In: Pham, T., Soloman, L. (eds.) Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications, vol. 11006, p. 1100610. SPIE (2019).
Lubo-Robles, D., Devegowda, D., Jayaram, V., Bedle, H., Marfurt, K.J., Pranter, M.J.: Machine learning model interpretability using SHAP values: application to a seismic facies classification task. In: SEG International Exposition and Annual Meeting (2020)
Kazhdan, D., Dimanov, B., Jamnik, M., Liò, P., Weller, A.: Now you see me (CME): concept-based model extraction. arXiv preprint arXiv:2010.13233 (2020)
Verma, S., Dickerson, J., Hines, K.: Counterfactual explanations for machine learning: a review. arXiv preprint arXiv:2010.10596 (2020)
Shvo, M., Klassen, T.Q., McIlraith, S.A.: Towards the role of theory of mind in explanation. In: International Workshop on Explainable, Transparent Autonomous Agents and Multi-Agent Systems, pp. 75–93 (2020)
Sutcliffe, K.M., Weick, K.E.: Information overload revisited. In: Hodgkinson, G.P., Starbuck, W.H. (eds.) The Oxford Handbook of Organizational Decision Making. Oxford University Press, London (2009)
Ssebandeke, A., Franklin, M., Lagnado, D.: Explanations that backfire: explainable artificial intelligence can cause information overload. Unpublished Manuscript (Submitted 2022)
Ehsan, U., et al.: The who in explainable AI: how AI background shapes perceptions of AI explanations. arXiv preprint arXiv:2107.13509 (2021)
Dragoni, M., Donadello, I., Eccher, C.: Explainable AI meets persuasiveness: translating reasoning results into behavioral change advice. AI Med. 105, 101840 (2020)
Donadello, I., Dragoni, M., Eccher, C.: Explaining reasoning algorithms with persuasiveness: a case study for a behavioural change system. In: Proceedings of the 35th Annual ACM Symposium on Applied Computing, pp. 646–653 (2020)
Lakkaraju, H., Bastani, O.: “How do I fool you?” Manipulating user trust via misleading black box explanations. In: Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, pp. 79–85 (2020)
Ariely, D., Norton, M.I.: How actions create–not just reveal–preferences. Trends Cogn. Sci. 12(1), 13–16 (2008)
Ashton, H., Franklin, M.: The problem of behaviour and preference manipulation in AI systems. In: The AAAI-22 Workshop on Artificial Intelligence Safety (SafeAI 2022) (2022)
Franklin, M., Ashton, H., Gorman, R., Armstrong, S.: Recognising the importance of preference change: a call for a coordinated multidisciplinary research effort in the age of AI. In: AAAI-22 Workshop on AI For Behavior Change (2022)
Tomsett, R., Braines, D., Harborne, D., Preece, A., Chakraborty, S.: Interpretable to whom? A role-based model for analyzing interpretable machine learning systems. arXiv preprint arXiv:1806.07552 (2018)
Islam, M.R., Ahmed, M.U., Barua, S., Begum, S.: A systematic review of explainable artificial intelligence in terms of different application domains and tasks. Appl. Sci. 12(3), 1353 (2022)
Anjomshoae, S., Najjar, A., Calvaresi, D., Främling, K:. Explainable agents and robots: results from a systematic literature review. In: 18th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2019), pp. 1078–1088 (2019)
Liao, Q.V., Gruen, D., Miller, S.: Questioning the AI: informing design practices for explainable AI user experiences. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2020)
Lage, I., et al.: An evaluation of the human-interpretability of explanation. arXiv preprint arXiv:1902.00006 (2019)
Narayanan, M., Chen, E., He, J., Kim, B., Gershman, S., Doshi-Velez, F.: How do humans understand explanations from machine learning systems? An evaluation of the human-interpretability of explanation. arXiv preprint arXiv:1802.00682 (2018)
Kindermans, P.J., Hooker, S., Adebayo, J., Alber, M., Schütt, K.T., Dähne, S., Erhan, D., Kim, B.: The (Un)reliability of saliency methods. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.) Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. LNCS (LNAI), vol. 11700, pp. 267–280. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28954-6_14
Chromik, M., Schuessler, M.: A taxonomy for human subject evaluation of black-box explanations in XAI. In: ExSS-ATEC@ IUI (2020)
Sperrle, F., El-Assady, M., Guo, G., Chau, D.H., Endert, A., Keim, D.: Should we trust (x) AI? Design dimensions for structured experimental evaluations. arXiv preprint arXiv:2009.06433 (2020)
Hoffman, R.R., Mueller, S.T., Klein, G., Litman, J.: Metrics for explainable AI: challenges and prospects. arXiv preprint arXiv:1812.04608 (2018)
Peltola, T., Celikok, M.M., Daee, P., Kaski, S.: Modelling user’s theory of AI’s mind in interactive intelligent systems. arXiv preprint arXiv:1809.02869 (2018)
Berliner, D.C., Calfee, R.C.: Handbook of Educational Psychology. Routledge (2013)
Malle BF, Ullman D. A multidimensional conception and measure of human-robot trust. In Trust in Human-Robot Interaction, pp. 3–25. (2021)
Kaur, D., Uslu, S., Rittichier, K.J., Durresi, A.: trustworthy artificial intelligence: a review. ACM Comput. Surv. (CSUR) 55(2), 1–38 (2022)
Tversky, A., Kahneman, D.: Causal schemas in judgments under uncertainty. Progr. Soc. Psychol. 1, 49–72 (2015)
Kirfel, L., Icard, T., Gerstenberg, T.: Inference from explanation. J. Exp. Psychol. Gene. (2021)
Wang, D., Yang, Q., Abdul, A., Lim, B.Y.: Designing theory-driven user-centric explainable AI. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Franklin, M., Lagnado, D. (2022). Human-AI Interaction Paradigm for Evaluating Explainable Artificial Intelligence. In: Stephanidis, C., Antona, M., Ntoa, S. (eds) HCI International 2022 Posters. HCII 2022. Communications in Computer and Information Science, vol 1580. Springer, Cham. https://doi.org/10.1007/978-3-031-06417-3_54
Download citation
DOI: https://doi.org/10.1007/978-3-031-06417-3_54
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-06416-6
Online ISBN: 978-3-031-06417-3
eBook Packages: Computer ScienceComputer Science (R0)