Compositional Verification of Railway Interlockings: Comparison of Two Methods | SpringerLink
Skip to main content

Compositional Verification of Railway Interlockings: Comparison of Two Methods

  • Conference paper
  • First Online:
Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification (RSSRail 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13294))

  • 603 Accesses

Abstract

Formal verification of safety of interlocking systems and of their configuration on a specific track layout is conceptually an easy task for model checking. Systems that control large railway networks, however, are challenging due to state space explosion problems. A possible way out is to adopt a compositional approach that allows safety of a large system to be deduced from the formal verification of parts in which the system has been properly decomposed. Two different approaches have been proposed in this regard, differing for the decomposition assumptions and for the adopted compositional verification techniques. In this paper we compare the two approaches, discussing the differences, but also showing how the different concepts behind them are essentially equivalent, hence producing comparable benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 7435
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9294
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The automatization of cut placements for RobustRailS tool is currently an undergoing activity.

  2. 2.

    Note that the operated cut is the one defined in [19], which slightly differs from the single cut defined in [10], since the t1 section is present in both subnetworks. The compositionality proof of [10] covers this case as well.

  3. 3.

    The formal equivalence of the two presented methods is out of scope of this paper.

  4. 4.

    The models are available at https://github.com/gorigloria/compositionalverificationmodels.

References

  1. Bonacchi, A., Fantechi, A., Bacherini, S., Tempestini, M.: Validation process for railway interlocking systems. Sci. Comput. Program. 128, 2–21 (2016)

    Article  Google Scholar 

  2. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18275-4_7

    Chapter  Google Scholar 

  3. Busard, S., Cappart, Q., Limbrée, C., Pecheur, C., Schaus, P.: Verification of railway interlocking systems. In: Proceedings of the ESSS 2015, Oslo, Norway, 22 June 2015. EPTCS, vol. 184, pp. 19–31. Open Publishing Association (2015)

    Google Scholar 

  4. Cimatti, A., Dorigatti, M., Tonetta, S.: OCRA: a tool for checking the refinement of temporal contracts. In: 28th IEEE/ACM International Conference on Automated Software Engineering, Silicon Valley, CA, USA, 11–15 November 2013, pp. 702–705. IEEE (2013)

    Google Scholar 

  5. Cimatti, A., Tonetta, S.: A property-based proof system for contract-based design. In: 38th Euromicro Conference on Software Engineering and Advanced Applications, pp. 21–28. IEEE (2012)

    Google Scholar 

  6. Cimatti, A., Tonetta, S.: Contracts-refinement proof system for component-based embedded systems. Sci. Comput. Program. 97, 333–348 (2015)

    Article  Google Scholar 

  7. Claessen, K., Sörensson, N.: A liveness checking algorithm that counts. In: Formal Methods in Computer-Aided Design, FMCAD 2012, Cambridge, UK, 22–25 October 2012, pp. 52–59. IEEE (2012)

    Google Scholar 

  8. Fantechi, A., Haxthausen, A.E., Macedo, H.D.: Compositional verification of interlocking systems for large stations. In: Cimatti, A., Sirjani, M. (eds.) SEFM 2017. LNCS, vol. 10469, pp. 236–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66197-1_15

    Chapter  Google Scholar 

  9. Ferrari, A., Magnani, G., Grasso, D., Fantechi, A.: Model checking interlocking control tables. In: Schnieder, E., Tarnai, G. (eds.) FORMS/FORMAT 2010, pp. 107–115. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14261-1_11

    Chapter  Google Scholar 

  10. Haxthausen, A.E., Fantechi, A.: Compositional verification of railway interlocking systems. Submitted for publication (2021)

    Google Scholar 

  11. Haxthausen, A.E., Nguyen, H.N., Roggenbach, M.: Comparing formal verification approaches of interlocking systems. In: Lecomte, T., Pinger, R., Romanovsky, A. (eds.) RSSRail 2016. LNCS, vol. 9707, pp. 160–177. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33951-1_12

    Chapter  Google Scholar 

  12. Haxthausen, A.E., Østergaard, P.H.: On the use of static checking in the verification of interlocking systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp. 266–278. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47169-3_19

    Chapter  Google Scholar 

  13. James, P., Möller, F., Nguyen, H.N., Roggenbach, M., Schneider, S., Treharne, H.: Decomposing scheme plans to manage verification complexity. In: FORMS/FORMAT 2014, pp. 210–220. Institute for Traffic Safety and Automation Engineering, Technische Univ. Braunschweig (2014)

    Google Scholar 

  14. James, P., et al.: Verification of solid state interlocking programs. In: Counsell, S., Núñez, M. (eds.) SEFM 2013. LNCS, vol. 8368, pp. 253–268. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05032-4_19

    Chapter  Google Scholar 

  15. Limbrée, C., Cappart, Q., Pecheur, C., Tonetta, S.: Verification of railway interlocking - compositional approach with OCRA. In: Lecomte, T., Pinger, R., Romanovsky, A. (eds.) RSSRail 2016. LNCS, vol. 9707, pp. 134–149. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33951-1_10

    Chapter  Google Scholar 

  16. Limbrée, C., Pecheur, C.: A framework for the formal verification of networks of railway interlockings - application to the belgian railway. Electron. Commun. Eur. Assoc. Softw. Sci. Technol. 76 (2018)

    Google Scholar 

  17. Limbrée, C.: Formal verification of railway interlocking systems. Ph.D. thesis, UCL Louvain (2019)

    Google Scholar 

  18. Macedo, H.D., Fantechi, A., Haxthausen, A.E.: Compositional verification of multi-station interlocking systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp. 279–293. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47169-3_20

    Chapter  Google Scholar 

  19. Macedo, H.D., Fantechi, A., Haxthausen, A.E.: Compositional model checking of interlocking systems for lines with multiple stations. In: Barrett, C., Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 146–162. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57288-8_11

    Chapter  Google Scholar 

  20. Peleska, J.: Industrial-strength model-based testing - state of the art and current challenges. In: 8th Workshop on Model-Based Testing, Rome, Italy, vol. 111, pp. 3–28. Open Publishing Association (2013)

    Google Scholar 

  21. Verified Systems International GmbH: RT-Tester Model-Based Test Case and Test Data Generator - RTT-MBT - User Manual (2013). http://www.verified.de

  22. Vu, L.H., Haxthausen, A.E., Peleska, J.: A Domain-Specific Language for Railway Interlocking Systems. In: FORMS/FORMAT 2014. pp. 200–209. Institute for Traffic Safety and Automation Engineering, Technische Universität Braunschweig (2014)

    Google Scholar 

  23. Vu, L.H., Haxthausen, A.E., Peleska, J.: A domain-specific language for generic interlocking models and their properties. In: Fantechi, A., Lecomte, T., Romanovsky, A. (eds.) RSSRail 2017. LNCS, vol. 10598, pp. 99–115. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68499-4_7

    Chapter  Google Scholar 

  24. Vu, L.H.: Formal development and verification of railway control systems - in the context of ERTMS/ETCS level 2. Ph.D. thesis, Technical University of Denmark, DTU Compute (2015)

    Google Scholar 

  25. Vu, L.H., Haxthausen, A.E., Peleska, J.: Formal modelling and verification of interlocking systems featuring sequential release. Sci. Comput. Program. 133, Part 2, 91–115 (2017)

    Google Scholar 

  26. Winter, K.: Optimising ordering strategies for symbolic model checking of railway interlockings. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS, vol. 7610, pp. 246–260. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34032-1_24

    Chapter  Google Scholar 

Download references

Acknowledgement

The authors wish to thank Jan Peleska and Linh H. Vu with whom Anne Haxthausen developed the RobustRailS verification method and tools, and Hugo D. Macedo, who collaborated in the initial work of Anne Haxthausen and Alessandro Fantechi on the RobustRailS compositional approach.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria Gori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fantechi, A., Gori, G., Haxthausen, A.E., Limbrée, C. (2022). Compositional Verification of Railway Interlockings: Comparison of Two Methods. In: Collart-Dutilleul, S., Haxthausen, A.E., Lecomte, T. (eds) Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification. RSSRail 2022. Lecture Notes in Computer Science, vol 13294. Springer, Cham. https://doi.org/10.1007/978-3-031-05814-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05814-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05813-4

  • Online ISBN: 978-3-031-05814-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics