Information Technologies for Assessing the Effectiveness of the Quarantine Measures | SpringerLink
Skip to main content

Information Technologies for Assessing the Effectiveness of the Quarantine Measures

  • Conference paper
  • First Online:
Information Technology in Disaster Risk Reduction (ITDRR 2021)

Abstract

The paper proposes to use information technology for modeling and assessing the effectiveness of alternative quarantine measures to prevent the spread of viral infections (for example, COVID 19). A software tool was developed to simulate the spread of a virus infection, the protection effectiveness and quarantine measures based on the Unity3D engine. The modeling process is accompanied by a visual display of the interaction of observation objects. Statistics are displayed dynamically and are presented both a statistical data and a graph. The simulation system is flexible and adaptive, allowing you to customize a number of parameters. Among which should be noted the following: observation parameters (up to 1000 elements, with an increase at startup on computers with high performance); selection of protection means with a percentage of the number of objects that use the protection type; behavioral scenarios of observed objects. This allows you to check the effectiveness of quarantine measures, to assess the effectiveness of protecting the population from viral infections. The paper also demonstrates a comparison of the obtained simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9723
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12154
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 12154
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. World Health Organization: Considerations for quarantine of individuals in the context of containment for coronavirus disease (COVID-19). 19 March 2020. World Health Organization, Geneva (2020). https://apps.who.int/iris/bitstream/handle/10665/331497/WHO-2019-nCoV-IHR_Quarantine-2020.2-eng.pdf?sequence=1&isAllowed=y. Accessed 24 Sept 2021

  2. Rothstein, M.A., Alcalde, M.G., Elster, N.R., Majumder, M.A., et al.: Quarantine and isolation: lessons learned from SARS, a report to the Centers for Disease Control and Prevention, pp. 1–160. Institute for Bioethics Health Policy and Law, University of Louisville School of Medicine, Louisville (KY) (2013)

    Google Scholar 

  3. Tognotti, E.: Lessons from the history of quarantine, from plague to influenza A. Emerg. Infect. Dis. 19(2), 254–259 (2013). https://doi.org/10.3201/eid1902.120312

    Article  Google Scholar 

  4. Cohen, D.: The Black Death, pp. 1347–1351. Franklin Watts, New York (1974)

    Google Scholar 

  5. Barua, D.: History of cholera. In: Barua, D., Greenough, W.B. III (eds.) Cholera. Plenum Medical Book Co., New York (1992)

    Google Scholar 

  6. Mafart, B., Perret, J.L.: History of the concept of quarantine. Med. Trop (Mars). 58, 14–20 (1998). (in French)

    Google Scholar 

  7. Tognotti, E.: Scientific triumphalism and learning from facts: bacteriology and the “Spanish flu” challenge of 1918. Soc. Hist. Med. 16, 97–110 (2003). https://doi.org/10.1093/shm/16.1.97

    Article  Google Scholar 

  8. World Health Organization: Key messages and actions for COVID-19 prevention and control in schools. World Health Organization, Geneva. https://www.who.int/docs/default-source/coronaviruse/key-messages-and-actions-for-covid-19-prevention-and-control-in-schools-march-2020.pdf. Accessed 24 Sept 2021

  9. Liu, W., Hethcote, H.W., Levin, S.A.: Dynamical behavior of epidemiological models with nonlinear incidence rates. J. Math. Biol. 25(4), 359–380 (1987)

    Google Scholar 

  10. Wang, P., Zheng, X., Ai, G., Liu, D., Zhu, B.: Time series prediction for the epidemic trends of COVID-19 using the improved LSTM deep learning method: case studies in Russia, Peru, and Iran. Chaos Solit. Fract. 140, 110214, 1–8 (2020). https://doi.org/10.1016/j.chaos.2020.110214

  11. Ng, K.Y., Gui, M.M.: COVID-19: development of a robust mathematical model and simulation package with consideration for ageing population and time delay for control action and resusceptibility. Phys. D. 411, 132599 (2020). https://doi.org/10.1016/j.physd.2020.132599

  12. Schruben, L.: Analytical simulation modeling. In: 2008 Winter Simulation Conference, pp. 113–121 (2008). https://doi.org/10.1109/WSC.2008.4736061

  13. Yanbo, P., Takahiro, Y., Kota, T., Takehiro, K., Sekimoto, Y.: Development of a people mass movement simulation framework based on reinforcement learning. Transp. Res. Part C Emerg. Technol. 117, 1–16 (2020)

    Google Scholar 

  14. Daley, D.J.: Epidemic Modelling: An Introduction. Cambridge University Press, Cambridge (2008)

    MATH  Google Scholar 

  15. Fine, P.E.M.: John Brownlee and the measurement of infectiousness: an historical study in epidemic theory. J. R. Stat. Soc. Ser. A (General) 142, 347–362 (1979). https://doi.org/10.2307/2982487

    Article  MathSciNet  Google Scholar 

  16. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. A 115, 700–721 (1927). https://doi.org/10.1098/rspa.1927.0118

    Article  MATH  Google Scholar 

  17. Engelmann, L.: A box, a trough and marbles: how the reed-frost epidemic theory shaped epidemiological reasoning in the 20th century. Hist. Philos. Life Sci. 43(3), 1–24 (2021). https://doi.org/10.1007/s40656-021-00445-z

    Article  Google Scholar 

  18. Zhang, J., Jin, Z., Sun, G.-Q., Sun, X.-D., Ruan, S.: Spatial spread of rabies in China. J. Comput. Anal. Appl. 2, 111–126 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Chen, J., Zou, L., Jin, Z., Ruan, S.: Modeling the geographic spread of rabies in China. PLoS Negl. Trop. Dis. 9(5), 1–18 (2015)

    Article  Google Scholar 

  20. Chumachenko, D., Chumachenko, T., Meniailov, I., Pyrohov, P., Kuzin, I., Rodyna, R.: On-line data processing, simulation and forecasting of the coronavirus disease (COVID-19) propagation in Ukraine based on machine learning approach. In: Babichev, S., Peleshko, D., Vynokurova, O. (eds.) DSMP 2020. CCIS, vol. 1158, pp. 372–382. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61656-4_25

    Chapter  Google Scholar 

  21. Glybochko, P., Fomin, V., Avdeev, S., et al.: Clinical characteristics of 1007 intensive care unit patients with SARS-CoV-2 pneumonia. Klinicheskaya farmakologiya i terapiya. Clin. Pharmacol. Ther. 29(2), 21–29 (2020). https://doi.org/10.32756/0869-5490-2020-2-21-29

  22. Abadeer, M., Gorlatch, S.: Distributed simulation of crowds with groups in CrowdSim. DS-RT 2019: In: Proceedings of the 23rd IEEE/ACM International Symposium on Distributed Simulation and Real Time Applications. pp. 128–135 (2019)

    Google Scholar 

  23. Grebennik, I., Semenets, V., Hubarenko, Y.: Information technologies for assessing the impact of climate change and natural disasters in socio-economic systems. In: Murayama, Y., Velev, D., Zlateva, P. (eds.) ITDRR 2019. IAICT, vol. 575, pp. 21–30. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-48939-7_3

    Chapter  Google Scholar 

  24. Grebennik, I., Khriapkin, O., Ovezgeldyyev, A., Pisklakova, V., Urniaieva, I.: The concept of a regional information-analytical system for emergency situations. In: Murayama, Y., Velev, D., Zlateva, P. (eds.) ITDRR 2017. IAICT, vol. 516, pp. 55–66. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18293-9_6

    Chapter  Google Scholar 

  25. Grebennik, I., Reshetnik, V., Ovezgeldyyev, A., Ivanov, V., Urniaieva, I.: Strategy of effective decision-making in planning and elimination of consequences of emergency situations In: Murayama, Y., Velev, D., Zlateva, P. (eds.) Information technology in disaster risk reduction, ITDRR 2018, vol. 550, pp. 66–75. IFIP Advances in Information and Communication Technology (2019)

    Google Scholar 

  26. Grebennik, I., Semenets, V., Hubarenko, Y., Hubarenko, M., Spasybin, M.: Creating a list of works on reconstruction of infrastructure elements in natural disasters based on information technologies. In: Murayama, Y., Velev, D., Zlateva, P. (eds.) ITDRR 2020. IAICT, vol. 622, pp. 144–159. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81469-4_12

    Chapter  Google Scholar 

  27. Grebennik, I., Ovezgeldyyev, A., Hubarenko, Y., Hubarenko, M.: Information technology reengineering of the electricity generation system in post-disaster recovery. In: Murayama, Y., Velev, D., Zlateva, P. (eds.) ITDRR 2019. IAICT, vol. 575, pp. 9–20. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-48939-7_2

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Grebennik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grebennik, I., Hubarenko, Y., Ananiev, M. (2022). Information Technologies for Assessing the Effectiveness of the Quarantine Measures. In: Sasaki, J., Murayama, Y., Velev, D., Zlateva, P. (eds) Information Technology in Disaster Risk Reduction. ITDRR 2021. IFIP Advances in Information and Communication Technology, vol 638. Springer, Cham. https://doi.org/10.1007/978-3-031-04170-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04170-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04169-3

  • Online ISBN: 978-3-031-04170-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics