Towards the Target: Self-regularized Progressive Learning for Unsupervised Domain Adaptation on Semantic Segmentation | SpringerLink
Skip to main content

Towards the Target: Self-regularized Progressive Learning for Unsupervised Domain Adaptation on Semantic Segmentation

  • Conference paper
  • First Online:
Pattern Recognition (ACPR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13188))

Included in the following conference series:

  • 1218 Accesses

Abstract

Unsupervised domain adaptation for semantic segmentation aims to transfer the knowledge learned from a labeled synthetic source domain to an unlabeled real-world target domain. The main challenge lies in the difference between the two domains, i.e., the so-called “domain gap”. Although the two domains are supposed to share the same set of class labels, the semantics encoded by the source labels are not always consistent with those of the target data. Some recent efforts have been taken to explore the domain-specific semantics by conducting a within-domain adaptation using the predicted pseudo labels of the target data. The quality of the pseudo labels is therefore essential to the within-domain adaptation. In this paper, we propose a unified framework to progressively facilitate the adaptation towards the target domain. First, we propose to conduct the cross-domain adaptation through a novel source label relaxation. The relaxed labels offer a good trade-off between the source supervision and the target semantics. Next, we propose a dual-level self-regularization to regularize the pseudo-label learning and also to tackle the class-imbalanced issue in the within-domain adaptation stage. The experiment results on two benchmarks, i.e., GTA5\(\rightarrow \)Cityscapes and SYNTHIA\(\rightarrow \)Cityscapes, show considerable improvement over the strong baseline and demonstrate the superiority of our framework over other methods.

J. Chang and Y-T Pang—Contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018). https://doi.org/10.1109/TPAMI.2017.2699184

    Article  Google Scholar 

  2. Chen, Y.H., Chen, W.Y., Chen, Y.T., Tsai, B.C., Frank Wang, Y.C., Sun, M.: No more discrimination: cross city adaptation of road scene segmenters. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1992–2001 (2017)

    Google Scholar 

  3. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)

    Google Scholar 

  4. Du, L., et al.: SSF-DAN: separated semantic feature based domain adaptation network for semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 982–991 (2019)

    Google Scholar 

  5. Everingham, M., Eslami, S.A., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes challenge: a retrospective. Int. J. Comput. Vis. 111(1), 98–136 (2015)

    Article  Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015)

    Google Scholar 

  7. Hoffman, J., et al.: Cycada: cycle-consistent adversarial domain adaptation. In: International Conference on Machine Learning, pp. 1989–1998. PMLR (2018)

    Google Scholar 

  8. Hou, Q., Zhang, L., Cheng, M.M., Feng, J.: Strip pooling: rethinking spatial pooling for scene parsing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4003–4012 (2020)

    Google Scholar 

  9. Huang, Z., Wang, X., Huang, L., Huang, C., Wei, Y., Liu, W.: CCNet: criss-cross attention for semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 603–612 (2019)

    Google Scholar 

  10. Li, X., Zhong, Z., Wu, J., Yang, Y., Lin, Z., Liu, H.: Expectation-maximization attention networks for semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9167–9176 (2019)

    Google Scholar 

  11. Li, Y., Yuan, L., Vasconcelos, N.: Bidirectional learning for domain adaptation of semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6936–6945 (2019)

    Google Scholar 

  12. Lian, Q., Lv, F., Duan, L., Gong, B.: Constructing self-motivated pyramid curriculums for cross-domain semantic segmentation: a non-adversarial approach. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 6758–6767 (2019)

    Google Scholar 

  13. Luo, Y., Zheng, L., Guan, T., Yu, J., Yang, Y.: Taking a closer look at domain shift: category-level adversaries for semantics consistent domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (June 2019)

    Google Scholar 

  14. Ma, H., Lin, X., Wu, Z., Yu, Y.: Coarse-to-fine domain adaptive semantic segmentation with photometric alignment and category-center regularization (2021)

    Google Scholar 

  15. Mei, K., Zhu, C., Zou, J., Zhang, S.: Instance adaptive self-training for unsupervised domain adaptation (2020)

    Google Scholar 

  16. Pan, F., Shin, I., Rameau, F., Lee, S., Kweon, I.S.: Unsupervised intra-domain adaptation for semantic segmentation through self-supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3764–3773 (2020)

    Google Scholar 

  17. Paul, S., Tsai, Y.-H., Schulter, S., Roy-Chowdhury, A.K., Chandraker, M.: Domain adaptive semantic segmentation using weak labels. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, Part IX. LNCS, vol. 12354, pp. 571–587. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_33

    Chapter  Google Scholar 

  18. Richter, S.R., Vineet, V., Roth, S., Koltun, V.: Playing for data: ground truth from computer games. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016, Part II. LNCS, vol. 9906, pp. 102–118. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_7

    Chapter  Google Scholar 

  19. Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A.M.: The synthia dataset: a large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3234–3243 (2016)

    Google Scholar 

  20. Shin, I., Woo, S., Pan, F., Kweon, I.S.: Two-phase pseudo label densification for self-training based domain adaptation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, Part XIII. LNCS, vol. 12358, pp. 532–548. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_32

    Chapter  Google Scholar 

  21. Takikawa, T., Acuna, D., Jampani, V., Fidler, S.: Gated-SCNN: gated shape CNNs for semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5229–5238 (2019)

    Google Scholar 

  22. Tang, S., Tang, P., Gong, Y., Ma, Z., Xie, M.: Unsupervised domain adaptation via coarse-to-fine feature alignment method using contrastive learning (2021)

    Google Scholar 

  23. Tranheden, W., Olsson, V., Pinto, J., Svensson, L.: DACS: domain adaptation via cross-domain mixed sampling. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 1379–1389 (January 2021)

    Google Scholar 

  24. Tsai, Y.H., Hung, W.C., Schulter, S., Sohn, K., Yang, M.H., Chandraker, M.: Learning to adapt structured output space for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7472–7481 (2018)

    Google Scholar 

  25. Tsai, Y.H., Sohn, K., Schulter, S., Chandraker, M.: Domain adaptation for structured output via discriminative patch representations. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1456–1465 (2019)

    Google Scholar 

  26. Vu, T.H., Jain, H., Bucher, M., Cord, M., Pérez, P.: Advent: adversarial entropy minimization for domain adaptation in semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2517–2526 (2019)

    Google Scholar 

  27. Wang, H., Shen, T., Zhang, W., Duan, L.-Y., Mei, T.: Classes matter: a fine-grained adversarial approach to cross-domain semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, Part XIV. LNCS, vol. 12359, pp. 642–659. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_38

    Chapter  Google Scholar 

  28. Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. arXiv preprint arXiv:1909.11065 (2019)

  29. Zhang, P., Zhang, B., Zhang, T., Chen, D., Wang, Y., Wen, F.: Prototypical pseudo label denoising and target structure learning for domain adaptive semantic segmentation. arXiv preprint arXiv:2101.10979 2, 1 (2021)

  30. Zhang, Y., David, P., Foroosh, H., Gong, B.: A curriculum domain adaptation approach to the semantic segmentation of urban scenes. IEEE Trans. Pattern Anal. Mach. Intell. 42, 1823–1841 (2019)

    Article  Google Scholar 

  31. Zheng, Z., Yang, Y.: Rectifying pseudo label learning via uncertainty estimation for domain adaptive semantic segmentation. Int. J. Comput. Vis. 129, 1106–1120 (2020)

    Article  Google Scholar 

  32. Zheng, Z., Yang, Y.: Unsupervised scene adaptation with memory regularization in vivo (2020)

    Google Scholar 

  33. Zou, Y., Yu, Z., Liu, X., Kumar, B., Wang, J.: Confidence regularized self-training. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5982–5991 (2019)

    Google Scholar 

  34. Zou, Y., Yu, Z., Vijaya Kumar, B., Wang, J.: Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 289–305 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiou-Ting Hsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chang, J., Pang, YT., Hsu, CT. (2022). Towards the Target: Self-regularized Progressive Learning for Unsupervised Domain Adaptation on Semantic Segmentation. In: Wallraven, C., Liu, Q., Nagahara, H. (eds) Pattern Recognition. ACPR 2021. Lecture Notes in Computer Science, vol 13188. Springer, Cham. https://doi.org/10.1007/978-3-031-02375-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-02375-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-02374-3

  • Online ISBN: 978-3-031-02375-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics