Unsupervised Domain Adaptive Point Cloud Semantic Segmentation | SpringerLink
Skip to main content

Unsupervised Domain Adaptive Point Cloud Semantic Segmentation

  • Conference paper
  • First Online:
Pattern Recognition (ACPR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13188))

Included in the following conference series:

Abstract

Domain adaptation for point cloud semantic segmentation is important since manually labeling point cloud datasets for each domain are expensive and time-consuming. In this paper, in order to transfer prior knowledge from the labeled source domain to the unlabeled target domain, we propose a novel domain consistency framework for unsupervised domain adaptive point cloud semantic segmentation. Specifically, in our framework, we construct a multi-level feature consistency model to generate the high quality pseudo labels for the unlabeled target domain. In the constructed feature consistency model, we encourage the labels of feature maps of point clouds at different levels to be as consistent as possible. Based on the generated features with rich geometric structure information, we furthermore impose a feature consistency constraint on the feature memory bank of the source domain and target features to develop a feature bank based cycle association model. Thus, benefiting from the developed cycle association model, we can alleviate the domain gap and learn discriminative features of point clouds for semantic segmentation in the target domain. Extensive evaluations on different outdoor scenarios (“vKITTI to SemanticPOSS” and “SynthCity to SemanticPOSS”) and indoor scenarios (“S3DIS to ScanNet”) show that our framework achieves state-of-the-art performance.

This work was supported by the National Science Fund of China under Grant (No. 61876083), Shanghai Automotive Industry Science and Technology Development Fundation (No. 1917).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Achituve, I., Maron, H., Chechik, G.: Self-supervised learning for domain adaptation on point clouds. In: WACV (2021)

    Google Scholar 

  2. Armeni, I., et al.: 3D semantic parsing of large-scale indoor spaces. In: CVPR (2016)

    Google Scholar 

  3. Chen, M., Xue, H., Cai, D.: Domain adaptation for semantic segmentation with maximum squares loss. In: ICCV (2019)

    Google Scholar 

  4. Chen, Y.C., Lin, Y.Y., Yang, M.H., Huang, J.B.: Crdoco: pixel-level domain transfer with cross-domain consistency. In: CVPR (2019)

    Google Scholar 

  5. Cheng, M., Hui, L., Xie, J., Yang, J., Kong, H.: Cascaded non-local neural network for point cloud semantic segmentation. In: IROS (2020)

    Google Scholar 

  6. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scannet: richly-annotated 3D reconstructions of indoor scenes. In: CVPR (2017)

    Google Scholar 

  7. Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: CVPR (2016)

    Google Scholar 

  8. Graham, B., Engelcke, M., Van Der Maaten, L.: 3D semantic segmentation with submanifold sparse convolutional networks. In: CVPR (2018)

    Google Scholar 

  9. Griffiths, D., Boehm, J.: Synthcity: a large scale synthetic point cloud. arXiv preprint arXiv:1907.04758 (2019)

  10. Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L., Bennamoun, M.: Deep learning for 3D point clouds: a survey. TPAMI 43, 4338–4364 (2020)

    Article  Google Scholar 

  11. Jaritz, M., Vu, T.H., Charette, R.D., Wirbel, E., Pérez, P.: xmuda: cross-modal unsupervised domain adaptation for 3D semantic segmentation. In: CVPR (2020)

    Google Scholar 

  12. Jing, L., Tian, Y.: Self-supervised visual feature learning with deep neural networks: a survey. TPAMI 43, 4037–4058 (2020)

    Article  Google Scholar 

  13. Kang, G., Wei, Y., Yang, Y., Zhuang, Y., Hauptmann, A.G.: Pixel-level cycle association: a new perspective for domain adaptive semantic segmentation. arXiv preprint arXiv:2011.00147 (2020)

  14. Langer, F., Milioto, A., Haag, A., Behley, J., Stachniss, C.: Domain transfer for semantic segmentation of lidar data using deep neural networks. In: IROS (2020)

    Google Scholar 

  15. Li, Y., Yuan, L., Vasconcelos, N.: Bidirectional learning for domain adaptation of semantic segmentation. In: CVPR (2019)

    Google Scholar 

  16. Pan, Y., Gao, B., Mei, J., Geng, S., Li, C., Zhao, H.: Semanticposs: a point cloud dataset with large quantity of dynamic instances. In: IV (2020)

    Google Scholar 

  17. Paszke, A., et al.: Automatic differentiation in pytorch (2017)

    Google Scholar 

  18. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3D classification and segmentation. In: CVPR (2017)

    Google Scholar 

  19. Saleh, K., et al.: Domain adaptation for vehicle detection from bird’s eye view lidar point cloud data. In: ICCV Workshop (2019)

    Google Scholar 

  20. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: CVPR (2017)

    Google Scholar 

  21. Vu, T.H., Jain, H., Bucher, M., Cord, M., Pérez, P.: Advent: adversarial entropy minimization for domain adaptation in semantic segmentation. In: CVPR (2019)

    Google Scholar 

  22. Wang, L., Huang, Y., Hou, Y., Zhang, S., Shan, J.: Graph attention convolution for point cloud semantic segmentation. In: CVPR (2019)

    Google Scholar 

  23. Wang, Z., et al.: Range adaptation for 3D object detection in lidar. In: ICCV Workshop (2019)

    Google Scholar 

  24. Wu, B., Wan, A., Yue, X., Keutzer, K.: Squeezeseg: convolutional neural nets with recurrent crf for real-time road-object segmentation from 3D lidar point cloud. In: ICRA (2018)

    Google Scholar 

  25. Wu, B., Zhou, X., Zhao, S., Yue, X., Keutzer, K.: Squeezesegv 2: improved model structure and unsupervised domain adaptation for road-object segmentation from a lidar point cloud. In: ICRA (2019)

    Google Scholar 

  26. Yang, Y., Soatto, S.: FDA: Fourier domain adaptation for semantic segmentation. In: CVPR (2020)

    Google Scholar 

  27. Yi, L., Gong, B., Funkhouser, T.: Complete & label: a domain adaptation approach to semantic segmentation of lidar point clouds. arXiv preprint arXiv:2007.08488 (2020)

  28. Zhao, H., Jiang, L., Fu, C.W., Jia, J.: Pointweb: enhancing local neighborhood features for point cloud processing. In: CVPR (2019)

    Google Scholar 

  29. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Qian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bian, Y., Xie, J., Qian, J. (2022). Unsupervised Domain Adaptive Point Cloud Semantic Segmentation. In: Wallraven, C., Liu, Q., Nagahara, H. (eds) Pattern Recognition. ACPR 2021. Lecture Notes in Computer Science, vol 13188. Springer, Cham. https://doi.org/10.1007/978-3-031-02375-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-02375-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-02374-3

  • Online ISBN: 978-3-031-02375-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics